【转载】Elasticsearch客户端API使用Demo
Elasticsearch客户端API使用Demo,
转载自官方文档,
以索引雇员文档为示例,
在命令行使用curl演示了一系列的Restful API操作。
1.索引雇员文档
第一个业务需求就是存储雇员数据。这将会以雇员文档的形式存储:
一个文档代表一个雇员。存储数据到Elasticsearch的行为叫做索引,但在索引一个文档之前,需要确定将文档存储在哪里。
一个Elasticsearch集群可以包含多个索引,相应的每个索引可以包含多个类型。这些不同的类型存储着多个文档,每个文档又有多个属性。
2.概念说明
你也许已经注意到索引这个词在Elasticsearch语境中包含多重意思,所以有必要做一点儿说明:
索引(名词):
如前所述,一个索引类似于传统关系数据库中的一个数据库,是一个存储关系型文档的地方。索引(index)的复数词为indices或indexes。
索引(动词):
索引一个文档就是存储一个文档到一个索引(名词)中以便它可以被检索和查询到。这非常类似于SQL语句中的INSERT关键词,除了文档已存在时新文档会替换旧文档情况之外。
倒排索引:
关系型数据库通过增加一个索引比如一个B树(B-tree)索引到指定的列上,以便提升数据检索速度。Elasticsearch和Lucene使用了一个叫做倒排索引的结构来达到相同的目的。
默认的,一个文档中的每一个属性都是被索引的(有一个倒排索引)和可搜索的。一个没有倒排索引的属性是不能被搜索到的。我们将在倒排索引讨论倒排索引的更多细节。
3.对于雇员目录,我们将做如下操作
每个雇员索引一个文档,包含该雇员的所有信息。
每个文档都将是employee类型。
该类型位于索引megacorp内。
该索引保存在我们的Elasticsearch集群中。
实践中这非常简单(尽管看起来有很多步骤),我们可以通过一条命令完成所有这些动作:
curl -XPUT 'localhost:9200/megacorp/employee/1?pretty' -H 'Content-Type: application/json' -d'
{
"first_name" : "John",
"last_name" : "Smith",
"age" : 25,
"about" : "I love to go rock climbing",
"interests": [ "sports", "music" ]
}
'
注意,路径/megacorp/employee/1包含了三部分的信息:
megacorp 索引名称
employee 类型名称
1 特定雇员的ID
请求体——JSON文档——包含了这位员工的所有详细信息,他的名字叫JohnSmith,今年25岁,喜欢攀岩。
很简单!无需进行执行管理任务,如创建一个索引或指定每个属性的数据类型之类的,可以直接只索引一个文档。Elasticsearch默认地完成其他一切,因此所有必需的管理任务都在后台使用默认设置完成。
4.进行下一步前,让我们增加更多的员工信息到目录中
curl -XPUT 'localhost:9200/megacorp/employee/2?pretty' -H 'Content-Type: application/json' -d'
{
"first_name" : "Jane",
"last_name" : "Smith",
"age" : 32,
"about" : "I like to collect rock albums",
"interests": [ "music" ]
}
'
curl -XPUT 'localhost:9200/megacorp/employee/3?pretty' -H 'Content-Type: application/json' -d'
{
"first_name" : "Douglas",
"last_name" : "Fir",
"age" : 35,
"about": "I like to build cabinets",
"interests": [ "forestry" ]
}
'
5.检索文档
目前我们已经在Elasticsearch中存储了一些数据,接下来就能专注于实现应用的业务需求了。第一个需求是可以检索到单个雇员的数据。
这在Elasticsearch中很简单。简单地执行一个HTTPGET请求并指定文档的地址——索引库、类型和ID。使用这三个信息可以返回原始的JSON文档:
curl -XGET 'localhost:9200/megacorp/employee/1?pretty'
返回结果包含了文档的一些元数据,以及_source属性,内容是JohnSmith雇员的原始JSON文档:
{
"_index" : "megacorp",
"_type" : "employee",
"_id" : "1",
"_version" : 1,
"found" : true,
"_source" : {
"first_name" : "John",
"last_name" : "Smith",
"age" : 25,
"about" : "I love to go rock climbing",
"interests": [ "sports", "music" ]
}
}
提示:将HTTP命令由PUT改为GET可以用来检索文档,同样的,可以使用DELETE命令来删除文档,以及使用HEAD指令来检查文档是否存在。如果想更新已存在的文档,只需再次PUT。
6.轻量搜索
一个GET是相当简单的,可以直接得到指定的文档。现在尝试点儿稍微高级的功能,比如一个简单的搜索!
第一个尝试的几乎是最简单的搜索了。我们使用下列请求来搜索所有雇员:
curl -XGET 'localhost:9200/megacorp/employee/_search?pretty'
可以看到,我们仍然使用索引库megacorp以及类型employee,但与指定一个文档ID不同,这次使用_search。返回结果包括了所有三个文档,放在数组hits中。一个搜索默认返回十条结果。
{
"took": 6,
"timed_out": false,
"_shards": { ... },
"hits": {
"total": 3,
"max_score": 1,
"hits": [
{
"_index": "megacorp",
"_type": "employee",
"_id": "3",
"_score": 1,
"_source": {
"first_name": "Douglas",
"last_name": "Fir",
"age": 35,
"about": "I like to build cabinets",
"interests": [ "forestry" ]
}
},
{
"_index": "megacorp",
"_type": "employee",
"_id": "1",
"_score": 1,
"_source": {
"first_name": "John",
"last_name": "Smith",
"age": 25,
"about": "I love to go rock climbing",
"interests": [ "sports", "music" ]
}
},
{
"_index": "megacorp",
"_type": "employee",
"_id": "2",
"_score": 1,
"_source": {
"first_name": "Jane",
"last_name": "Smith",
"age": 32,
"about": "I like to collect rock albums",
"interests": [ "music" ]
}
}
]
}
}
注意:返回结果不仅告知匹配了哪些文档,还包含了整个文档本身:显示搜索结果给最终用户所需的全部信息。
接下来,尝试下搜索姓氏为Smith的雇员。为此,我们将使用一个高亮搜索,很容易通过命令行完成。这个方法一般涉及到一个查询字符串(query-string)搜索,因为我们通过一个URL参数来传递查询信息给搜索接口:
curl -XGET 'localhost:9200/megacorp/employee/_search?q=last_name:Smith&pretty'
我们仍然在请求路径中使用_search端点,并将查询本身赋值给参数q=。返回结果给出了所有的Smith:
{
...
"hits": {
"total": 2,
"max_score": 0.30685282,
"hits": [
{
...
"_source": {
"first_name": "John",
"last_name": "Smith",
"age": 25,
"about": "I love to go rock climbing",
"interests": [ "sports", "music" ]
}
},
{
...
"_source": {
"first_name": "Jane",
"last_name": "Smith",
"age": 32,
"about": "I like to collect rock albums",
"interests": [ "music" ]
}
}
]
}
}
7.使用查询表达式搜索
Query-string搜索通过命令非常方便地进行临时性的即席搜索,但它有自身的局限性(参见轻量搜索)。Elasticsearch提供一个丰富灵活的查询语言叫做查询表达式,它支持构建更加复杂和健壮的查询。
领域特定语言(DSL),指定了使用一个JSON请求。我们可以像这样重写之前的查询所有Smith的搜索:
curl -XGET 'localhost:9200/megacorp/employee/_search?pretty' -H 'Content-Type: application/json' -d'
{
"query" : {
"match" : {
"last_name" : "Smith"
}
}
}
'
返回结果与之前的查询一样,但还是可以看到有一些变化。其中之一是,不再使用query-string参数,而是一个请求体替代。这个请求使用JSON构造,并使用了一个match查询(属于查询类型之一,后续将会了解)。
8.更复杂的搜索
现在尝试下更复杂的搜索。同样搜索姓氏为Smith的雇员,但这次我们只需要年龄大于30的。查询需要稍作调整,使用过滤器filter,它支持高效地执行一个结构化查询。
curl -XGET 'localhost:9200/megacorp/employee/_search?pretty' -H 'Content-Type: application/json' -d'
{
"query" : {
"bool": {
"must": {
"match" : {
"last_name" : "smith" #1#
}
},
"filter": {
"range" : {
"age" : { "gt" : 30 } #2#
}
}
}
}
}
'
#1# 这部分与我们之前使用的match查询一样。
#2# 这部分是一个range过滤器,它能找到年龄大于30的文档,其中gt表示_大于(_greatthan)。
目前无需太多担心语法问题,后续会更详细地介绍。只需明确我们添加了一个过滤器用于执行一个范围查询,并复用之前的match查询。现在结果只返回了一个雇员,叫JaneSmith,32岁。
{
...
"hits": {
"total": 1,
"max_score": 0.30685282,
"hits": [
{
...
"_source": {
"first_name": "Jane",
"last_name": "Smith",
"age": 32,
"about": "I like to collect rock albums",
"interests": [ "music" ]
}
}
]
}
}
9.全文搜索
截止目前的搜索相对都很简单:单个姓名,通过年龄过滤。现在尝试下稍微高级点儿的全文搜索——一项传统数据库确实很难搞定的任务。
搜索下所有喜欢攀岩(rockclimbing)的雇员:
curl -XGET 'localhost:9200/megacorp/employee/_search?pretty' -H 'Content-Type: application/json' -d'
{
"query" : {
"match" : {
"about" : "rock climbing"
}
}
}
'
显然我们依旧使用之前的match查询在about属性上搜索"rockclimbing"。得到两个匹配的文档:
{
...
"hits": {
"total": 2,
"max_score": 0.16273327,
"hits": [
{
...
"_score": 0.16273327, #3#
"_source": {
"first_name": "John",
"last_name": "Smith",
"age": 25,
"about": "I love to go rock climbing",
"interests": [ "sports", "music" ]
}
},
{
...
"_score": 0.016878016, #4#
"_source": {
"first_name": "Jane",
"last_name": "Smith",
"age": 32,
"about": "I like to collect rock albums",
"interests": [ "music" ]
}
}
]
}
}
#3#,#4# 相关性得分
Elasticsearch默认按照相关性得分排序,即每个文档跟查询的匹配程度。第一个最高得分的结果很明显:JohnSmith的about属性清楚地写着"rockclimbing"。
但为什么JaneSmith也作为结果返回了呢?原因是她的about属性里提到了"rock"。因为只有"rock"而没有"climbing",所以她的相关性得分低于John的。
这是一个很好的案例,阐明了Elasticsearch如何在全文属性上搜索并返回相关性最强的结果。Elasticsearch中的相关性概念非常重要,也是完全区别于传统关系型数据库的一个概念,数据库中的一条记录要么匹配要么不匹配。
10.短语搜索
找出一个属性中的独立单词是没有问题的,但有时候想要精确匹配一系列单词或者短语。比如,我们想执行这样一个查询,仅匹配同时包含"rock"和"climbing",并且二者以短语"rockclimbing"的形式紧挨着的雇员记录。
为此对match查询稍作调整,使用一个叫做match_phrase的查询:
curl -XGET 'localhost:9200/megacorp/employee/_search?pretty' -H 'Content-Type: application/json' -d'
{
"query" : {
"match_phrase" : {
"about" : "rock climbing"
}
}
}
'
毫无悬念,返回结果仅有JohnSmith的文档。
{
...
"hits": {
"total": 1,
"max_score": 0.23013961,
"hits": [
{
...
"_score": 0.23013961,
"_source": {
"first_name": "John",
"last_name": "Smith",
"age": 25,
"about": "I love to go rock climbing",
"interests": [ "sports", "music" ]
}
}
]
}
}
11.高亮搜索
许多应用都倾向于在每个搜索结果中高亮部分文本片段,以便让用户知道为何该文档符合查询条件。在Elasticsearch中检索出高亮片段也很容易。
再次执行前面的查询,并增加一个新的highlight参数:
curl -XGET 'localhost:9200/megacorp/employee/_search?pretty' -H 'Content-Type: application/json' -d'
{
"query" : {
"match_phrase" : {
"about" : "rock climbing"
}
},
"highlight": {
"fields" : {
"about" : {}
}
}
}
'
当执行该查询时,返回结果与之前一样,与此同时结果中还多了一个叫做highlight的部分。这个部分包含了about属性匹配的文本片段,并以HTML标签<em></em>封装:
{
...
"hits": {
"total": 1,
"max_score": 0.23013961,
"hits": [
{
...
"_score": 0.23013961,
"_source": {
"first_name": "John",
"last_name": "Smith",
"age": 25,
"about": "I love to go rock climbing",
"interests": [ "sports", "music" ]
},
"highlight": {
"about": [
"I love to go <em>rock</em> <em>climbing</em>" #5#
]
}
}
]
}
}
#5# 原始文本中的高亮片段
关于高亮搜索片段,可以在highlightingreferencedocumentation了解更多信息。
12.分析
终于到了最后一个业务需求:支持管理者对雇员目录做分析。Elasticsearch有一个功能叫聚合(aggregations),允许我们基于数据生成一些精细的分析结果。聚合与SQL中的GROUPBY类似但更强大。
举个例子,挖掘出雇员中最受欢迎的兴趣爱好:
curl -XGET 'localhost:9200/megacorp/employee/_search?pretty' -H 'Content-Type: application/json' -d'
{
"aggs": {
"all_interests": {
"terms": { "field": "interests" }
}
}
}
'
暂时忽略掉语法,直接看看结果:
{
...
"hits": { ... },
"aggregations": {
"all_interests": {
"buckets": [
{
"key": "music",
"doc_count": 2
},
{
"key": "forestry",
"doc_count": 1
},
{
"key": "sports",
"doc_count": 1
}
]
}
}
}
可以看到,两位员工对音乐感兴趣,一位对林地感兴趣,一位对运动感兴趣。这些聚合并非预先统计,而是从匹配当前查询的文档中即时生成。如果想知道叫Smith的雇员中最受欢迎的兴趣爱好,可以直接添加适当的查询来组合查询:
curl -XGET 'localhost:9200/megacorp/employee/_search?pretty' -H 'Content-Type: application/json' -d'
{
"query": {
"match": {
"last_name": "smith"
}
},
"aggs": {
"all_interests": {
"terms": {
"field": "interests"
}
}
}
}
'
all_interests聚合已经变为只包含匹配查询的文档:
...
"all_interests": {
"buckets": [
{
"key": "music",
"doc_count": 2
},
{
"key": "sports",
"doc_count": 1
}
]
}
聚合还支持分级汇总。比如,查询特定兴趣爱好员工的平均年龄:
curl -XGET 'localhost:9200/megacorp/employee/_search?pretty' -H 'Content-Type: application/json' -d'
{
"aggs" : {
"all_interests" : {
"terms" : { "field" : "interests" },
"aggs" : {
"avg_age" : {
"avg" : { "field" : "age" }
}
}
}
}
}
'
得到的聚合结果有点儿复杂,但理解起来还是很简单的:
...
"all_interests": {
"buckets": [
{
"key": "music",
"doc_count": 2,
"avg_age": {
"value": 28.5
}
},
{
"key": "forestry",
"doc_count": 1,
"avg_age": {
"value": 35
}
},
{
"key": "sports",
"doc_count": 1,
"avg_age": {
"value": 25
}
}
]
}
输出基本是第一次聚合的加强版。依然有一个兴趣及数量的列表,只不过每个兴趣都有了一个附加的avg_age属性,代表有这个兴趣爱好的所有员工的平均年龄。
即使现在不太理解这些语法也没有关系,依然很容易了解到复杂聚合及分组通过Elasticsearch特性实现得很完美。可提取的数据类型毫无限制。
13.教程结语
欣喜的是,这是一个关于 Elasticsearch 基础描述的教程,且仅仅是浅尝辄止,更多诸如 suggestions、geolocation、percolation、fuzzy 与 partial matching 等特性均被省略,以便保持教程的简洁。但它确实突显了开始构建高级搜索功能多么容易。不需要配置——只需要添加数据并开始搜索!
很可能语法会让你在某些地方有所困惑,并且对各个方面如何微调也有一些问题。没关系!本书后续内容将针对每个问题详细解释,让你全方位地理解 Elasticsearch 的工作原理。
14.转载原文链接
官方英文手册:
https://www.elastic.co/guide/cn/elasticsearch/guide/current/_indexing_employee_documents.html