ThreadLocal源码分析

2018-08-03  本文已影响0人  xlhzj
package java.lang;
import java.lang.ref.*;
import java.util.Objects;
import java.util.concurrent.atomic.AtomicInteger;
import java.util.function.Supplier;

/**
 * 该类提供线程局部变量.  
 * 这种变量在多线程环境下访问(通过get或set方法访问)时能保证各个线程里的变量相对独立于其他线程内的变量。
 * 该实例通常是在类中定义为 private static fields,用于关联线程和线程的上下文。(例如:a user ID or Transaction ID).
 * 例如: 下面的类生成每个线程本地的唯一标识符。
 * 线程的id在第一次调用时被分配 {@code ThreadId.get()},并在随后的调用中保持不变 .
 * <pre>
 * import java.util.concurrent.atomic.AtomicInteger;
 *
 * public class ThreadId {
 *     // 包含要分配的下一个线程id的原子整数 
 *     private static final AtomicInteger nextId = new AtomicInteger(0);
 *
 *     // 包含每个线程id的线程局部变量 
 *     private static final ThreadLocal<Integer> threadId =
 *         new ThreadLocal<Integer>() {
               @Override 
               protected Integer initialValue() {
 *                 return nextId.getAndIncrement();
 *         }
 *     };
 *
 *     // 返回当前线程的唯一ID
 *     public static int get() {
 *         return threadId.get();
 *     }
 * }
 * </pre>
 * 只要线程{@code ThreadLocal}是活动的且实例是可访问的,则每个线程都保持对线程本地变量的副本的隐式引用。
 * 一个线程结束后,所有线程本地实例的副本都受垃圾回收的影响。(除非存在对这些副本的其他引用)
 */
public class ThreadLocal<T> {
    /**
     * ThreadLocals rely on per-thread linear-probe hash maps attached
     to each thread (Thread.threadLocals and
     * inheritableThreadLocals).  

     * ThreadLocal 对象充当键,通过threadLocalHashCode搜索。(将会用于在ThreadLocalMap中找到ThreadLocal对应的value值)

     * 这是一种自定义的 hash code(仅仅在ThreadLocalMaps中使用),
     * 为了排除在相同线程下连续使用构造器实例化ThreadLocals出现的hashcode碰撞冲突,在较少情况下也能保持良好的表现
     */
    private final int threadLocalHashCode = nextHashCode();

    /**
     * 下个hasCode,从0开始,原子级更新
     */
    private static AtomicInteger nextHashCode =
        new AtomicInteger();

    /**
     * 在一个 AtomicInteger 变量(初始值为0)的基础上每次累加 0x61c88647,使用 AtomicInteger 为了保证每次的加法是原子操作。
     * 而 0x61c88647 这个就比较神奇了,它可以使 hashcode 均匀的分布在大小为 2 的 N 次方的数组里。
     */
    private static final int HASH_INCREMENT = 0x61c88647;

    /**
     * 返回下一个hash code.
     */
    private static int nextHashCode() {
        return nextHashCode.getAndAdd(HASH_INCREMENT);
    }

    /**
     *
     * 当线程第一次访问变量时 {@link #get},将调用此方法,
     * 除非线程先前调用了该方法{@link #set},在这种情况下,将不会为线程调用该方法。
     *
     * 通常,每个线程最多调用一次此方法,但在后续调用了{@link #remove} 的情况下,可以再次调用该方法{@link #get}。
     *
     * <p>
     * 此实现只是返回{@code null};
     * 如果程序员希望线程局部变量有一个初始值而不是{@code null},{@code ThreadLocal}必须被子类化 ,然后重写此方法. 
     * 通常,会使用匿名内部类。
     */
    protected T initialValue() {
        return null;
    }

    /**
     * 创建 ThreadLocal 局部变量。
     * 变量的初始值是通过调用{@code get}上的{@code Supplier}方法来确定的。
     *
     * @param <S> thread local 类型
     * @param supplier 用于确定初始值的 supplier
     * @return 一个新的 thread local
     * @throws NullPointerException 如果 supplier 是null
     * @since 1.8
     */
    public static <S> ThreadLocal<S> withInitial(Supplier<? extends S> supplier) {
        return new SuppliedThreadLocal<>(supplier);
    }

    /**
     * 默认构造器
     */
    public ThreadLocal() {
    }

    /**

     * 返回当前ThreadLocal变量中的 thread 副本。
     * 如果对于当前 thread,ThreadLocalMap没有值,那么将调用{@link #initialValue} 方法初始化值
     *
     * @return thread-local中当前thread的值 
     */
    public T get() {
        Thread t = Thread.currentThread();
        ThreadLocalMap map = getMap(t);
        if (map != null) {
            ThreadLocalMap.Entry e = map.getEntry(this);
            if (e != null) {
                @SuppressWarnings("unchecked")
                T result = (T)e.value;
                return result;
            }
        }
        return setInitialValue();
    }

    /**
     * 创建 初始值的方法 set()。
     * 如果 开发者 重写set(),将使用此set()
     *
     * @return 初始值
     */
    private T setInitialValue() {
        T value = initialValue();
        Thread t = Thread.currentThread();
        ThreadLocalMap map = getMap(t);
        if (map != null)
            map.set(this, value);
        else
            createMap(t, value);
        return value;
    }

    /**
     * 大多数子类并不需要重写此方法,只依赖于{@link #initialValue}方法设置 thread-locals 的值
     *
     * @param value 值将会被存储在当前ThreadLocal中
     */
    public void set(T value) {
        Thread t = Thread.currentThread();
        ThreadLocalMap map = getMap(t);
        if (map != null)
            map.set(this, value);
        else
            createMap(t, value);
    }

    /**
     * 清除 ThreadLocalMap 中当前thread的值。
     * 如果此 thread-local 被当前 thread 读取{@linkplain #get read},且这期间当前线程没有设置其值,则调用其{@link #initialValue}方法重新初始化其值。
     * 这将导致在当前线程中多次调用 {@link #initialValue}方法
     * If this thread-local variable is subsequently
     *
     * @since 1.5
     */
     public void remove() {
         ThreadLocalMap m = getMap(Thread.currentThread());
         if (m != null)
             m.remove(this);
     }

    /**
     * 通过ThreadLocal获取关联的map。
     * 在InheritableThreadLocal中重写。
     *
     * @param  t 当前线程
     * @return ThreadLocalMap
     */
    ThreadLocalMap getMap(Thread t) {
        return t.threadLocals;
    }

    /**
     * 根据currentThread 和 fistValue 创建 当前线程的 ThreadLocalMap 
     *
     * @param t 当前线程
     * @param firstValue map中的第一个entry
     */
    void createMap(Thread t, T firstValue) {
        t.threadLocals = new ThreadLocalMap(this, firstValue);
    }

    /**
     * 通过 parentMap 创建对应的 ThreadLocalMap
     * 设计为 只被 Thread 构造器。
     *
     * @param  parentMap 与parent thread关联的ThreadLocalMap
     * @return 与包含parentMap的map
     */
    static ThreadLocalMap createInheritedMap(ThreadLocalMap parentMap) {
        return new ThreadLocalMap(parentMap);
    }

    /**
     *  childValue() 显然是定义在 可继承ThradLocal 的子类中,
     *  但这里是内部定义的,目的是提供 createInheritedMap 工厂方法,而不需要在InheritableThreadLocal的子类中映射类。
     *
     *  这种技巧比在方法中嵌入测试实例更好。
     */
    T childValue(T parentValue) {
        throw new UnsupportedOperationException();
    }

    /**
     * ThreadLocal的扩展,从具体的 {@code Supplier} 获得初始值
     */
    static final class SuppliedThreadLocal<T> extends ThreadLocal<T> {

        private final Supplier<? extends T> supplier;

        SuppliedThreadLocal(Supplier<? extends T> supplier) {
            this.supplier = Objects.requireNonNull(supplier);
        }

        @Override
        protected T initialValue() {
            return supplier.get();
        }
    }

    /**
        ThreadLocalMap是一个定制的 hash map,只适合于维护 thread local。
        在ThreadLocal类之外不导出任何操作。
        这个类是 package private,允许声明类 Thread 中的 fields。
        为了帮助处理非常大的和long-lived usages,哈希表条目使用WeakReferences作为键。
      To help deal with
     * very large and long-lived usages, the hash table entries use
     * WeakReferences for keys. However, since reference queues are not
     * used, stale entries are guaranteed to be removed only when
     * the table starts running out of space.
     */
    static class ThreadLocalMap {

        /**
         * The entries in this hash map extend WeakReference, using
         * its main ref field as the key (which is always a
         * ThreadLocal object). 
         在当前 ThreadLocalMap 中
        如果 key 
          Note that null keys (i.e. entry.get()
         * == null) mean that the key is no longer referenced, so the
         * entry can be expunged from table.  Such entries are referred to
         * as "stale entries" in the code that follows.
         */
        static class Entry extends WeakReference<ThreadLocal<?>> {
            /** 与ThreadLocal关联的值 */
            Object value;

            Entry(ThreadLocal<?> k, Object v) {
                super(k);
                value = v;
            }
        }

        /**
         * 初始容量-- MUST be a power of two.
         */
        private static final int INITIAL_CAPACITY = 16;

        /**
         * table,如果需要调整大小,通常会是原来的2倍
         */
        private Entry[] table;

        /**
         * table中 entryies 的数量
         */
        private int size = 0;

        /**
         * 要调整的下一个 size value。
         */
        private int threshold; // 默认为 0

        /**
         * 最坏情况下 设置容量的调整阈值为 2/3 负载因子,不再以倍数增长
         */
        private void setThreshold(int len) {
            threshold = len * 2 / 3;
        }

        /**
         * 轮询下一个
         */
        private static int nextIndex(int i, int len) {
            return ((i + 1 < len) ? i + 1 : 0);
        }

        /**
         *  轮询上一个 
         */
        private static int prevIndex(int i, int len) {
            return ((i - 1 >= 0) ? i - 1 : len - 1);
        }

        /**
         * 构造器,包含(firstKey, firstValue)。
         * ThreadLocalMaps 是延迟初始化的,只有在 最少一个 entry 放入其才会初始化
         */
        ThreadLocalMap(ThreadLocal<?> firstKey, Object firstValue) {
            table = new Entry[INITIAL_CAPACITY];
            int i = firstKey.threadLocalHashCode & (INITIAL_CAPACITY - 1);
            table[i] = new Entry(firstKey, firstValue);
            size = 1;
            setThreshold(INITIAL_CAPACITY);
        }

        /**
         * 从已给的 parentMap 构造新的 map 包含所有可继承的 ThreadLocals
         * 私有,只被 createInheritedMap() 调用。
         *
         * @param parentMap 与 parent thread 关联的map.
         */
        private ThreadLocalMap(ThreadLocalMap parentMap) {
            Entry[] parentTable = parentMap.table;
            int len = parentTable.length;
            setThreshold(len);
            table = new Entry[len];

            for (int j = 0; j < len; j++) {
                Entry e = parentTable[j];
                if (e != null) {
                    @SuppressWarnings("unchecked")
                    ThreadLocal<Object> key = (ThreadLocal<Object>) e.get();
                    if (key != null) {
                        Object value = key.childValue(e.value);
                        Entry c = new Entry(key, value);
                        int h = key.threadLocalHashCode & (len - 1);
                        while (table[h] != null)
                            h = nextIndex(h, len);
                        table[h] = c;
                        size++;
                    }
                }
            }
        }

        /**
         * 获取与key关联的entry。
         * 此方法为了快速命中 目录中的 entry
         * 如果为null,则使用 getEntryAfterMiss()方法,这样设计为了最大限度提高 命中率,更加快速、便捷
         *
         * @param  key thread local变量
         * @return 与 传值key关联的 entry,如果没有则返回null
         */
        private Entry getEntry(ThreadLocal<?> key) {
            int i = key.threadLocalHashCode & (table.length - 1);
            Entry e = table[i];
            if (e != null && e.get() == key)
                return e;
            else
                return getEntryAfterMiss(key, i, e);
        }

        /**
         * 当 key 没有在此目录中找到,将会使用此方法
         *
         * @param  key threadLocal 对象
         * @param  i key的hash code 的表索引
         * @param  e entry[] 位置i的元素
         * @return 与key关联的entry,如果没有则为Null
         */
        private Entry getEntryAfterMiss(ThreadLocal<?> key, int i, Entry e) {
            Entry[] tab = table;
            int len = tab.length;

            while (e != null) {
                ThreadLocal<?> k = e.get();
                if (k == key)
                    return e;
                if (k == null)
                    expungeStaleEntry(i);
                else
                    i = nextIndex(i, len);
                e = tab[i];
            }
            return null;
        }

        /**
         * 设置与 key 关联的值
         * @param key  ThreadLocal 对象
         * @param value ThreadLocal 存储的值
         */
        private void set(ThreadLocal<?> key, Object value) {

            // We don't use a fast path as with get() because it is at
            // least as common to use set() to create new entries as
            // it is to replace existing ones, in which case, a fast
            // path would fail more often than not.

            Entry[] tab = table;
            int len = tab.length;
            int i = key.threadLocalHashCode & (len-1);
            for (Entry e = tab[i];
                 e != null;
                 e = tab[i = nextIndex(i, len)]) {
                ThreadLocal<?> k = e.get();
                //如果找到了,直接设置 value 值即可  
                if (k == key) {
                    e.value = value;
                    return;
                }
                //可以认定 k 已经没有引用了。 
                if (k == null) {
                    replaceStaleEntry(key, value, i);
                    return;
                }
            }

            tab[i] = new Entry(key, value);
            int sz = ++size;
            if (!cleanSomeSlots(i, sz) && sz >= threshold)
                rehash();
        }

        /**
         * 根据key删除 table 中的元素
         */
        private void remove(ThreadLocal<?> key) {
            Entry[] tab = table;
            int len = tab.length;
            int i = key.threadLocalHashCode & (len-1);
            for (Entry e = tab[i];
                 e != null;
                 e = tab[i = nextIndex(i, len)]) {
                if (e.get() == key) {
                    e.clear();
                    expungeStaleEntry(i);
                    return;
                }
            }
        }

        /**
         * 替换一个过期的 entry,在对特定key操作期间。
         * 无论指定的key中是否已存在 entry,值将被存储到entry中。
         * As a side effect, this method expunges all stale entries in the
         * "run" containing the stale entry.  (A run is a sequence of entries
         * between two null slots.)
         *
         * @param  key the key
         * @param  value 关联key的值
         * @param  staleSlot index of the first stale entry encountered while
         *         searching for key.
         */
        private void replaceStaleEntry(ThreadLocal<?> key, Object value,
                                       int staleSlot) {
            Entry[] tab = table;
            int len = tab.length;
            Entry e;

            // Back up to check for prior stale entry in current run.
            // We clean out whole runs at a time to avoid continual
            // incremental rehashing due to garbage collector freeing
            // up refs in bunches (i.e., whenever the collector runs).
            int slotToExpunge = staleSlot;
            for (int i = prevIndex(staleSlot, len);
                 (e = tab[i]) != null;
                 i = prevIndex(i, len))
                if (e.get() == null)
                    slotToExpunge = i;

            // Find either the key or trailing null slot of run, whichever
            // occurs first
            for (int i = nextIndex(staleSlot, len);
                 (e = tab[i]) != null;
                 i = nextIndex(i, len)) {
                ThreadLocal<?> k = e.get();

                // 如果找到key,那么需要用过期的 entry 交换它,以保证 hash table 的顺序
                // 
                // The newly stale slot, or any other stale slot
                // encountered above it, can then be sent to expungeStaleEntry
                // to remove or rehash all of the other entries in run.
                if (k == key) {
                    e.value = value;

                    tab[i] = tab[staleSlot];
                    tab[staleSlot] = e;

                    // 如果存在,开始清除之前过期的 entry
                    if (slotToExpunge == staleSlot)
                        slotToExpunge = i;
                    cleanSomeSlots(expungeStaleEntry(slotToExpunge), len);
                    return;
                }

                // If we didn't find stale entry on backward scan, the
                // first stale entry seen while scanning for key is the
                // first still present in the run.
                if (k == null && slotToExpunge == staleSlot)
                    slotToExpunge = i;
            }

            // 如果key不存在,则 向过期的 slot中放入新的entry
            tab[staleSlot].value = null;
            tab[staleSlot] = new Entry(key, value);

            // 如果运行时有其他过期的entries,则删除
            if (slotToExpunge != staleSlot)
                cleanSomeSlots(expungeStaleEntry(slotToExpunge), len);
        }

        /**
           删除过期的 entry,
         * Expunge a stale entry by rehashing any possibly colliding entries
         * lying between staleSlot and the next null slot.  This also expunges  any other stale entries encountered before the trailing null.  
            这也会删除 
            见 Knuth,Section 6.4
         *
         * @param staleSlot index of slot known to have null key
         * @return the index of the next null slot after staleSlot
         * (all between staleSlot and this slot will have been checked
         * for expunging).
         */
        private int expungeStaleEntry(int staleSlot) {
            Entry[] tab = table;
            int len = tab.length;

            // 删除在 table 中 staleSlot 位置的元素
            tab[staleSlot].value = null;
            tab[staleSlot] = null;
            size--;// 计数减少1

            // rehash 直到遇到下一个null的值  
            Entry e;
            int i;
            for (i = nextIndex(staleSlot, len);
                 (e = tab[i]) != null;
                 i = nextIndex(i, len)) {
                ThreadLocal<?> k = e.get();
                // 如果为 null 说明当前 e 对应的 ThreadLocal 已经没有引用
                if (k == null) {
                    e.value = null;
                    tab[i] = null;
                    size--;
                } else {
                    int h = k.threadLocalHashCode & (len - 1);
                    if (h != i) {
                        tab[i] = null;

                        //与Knuth6.4算法R不同,我们必须扫描到NULL,因为多个entries可能已经过时。
                        while (tab[h] != null)
                            h = nextIndex(h, len);
                        tab[h] = e;
                    }
                }
            }
            return i;
        }

        /**
         * Heuristically scan some cells looking for stale entries.
           扫描一些单元格寻找过期的entries。
           这将在添加新元素或删除一个过期的元素时调用。
            It performs a logarithmic number of scans, as a balance between no
            scanning (fast but retains garbage) and a number of scans
          proportional to number of elements, that would find all
          garbage but would cause some insertions to take O(n) time.
         *
         * @param i 非过期entry的位置。从i开始扫描元素。
         *
         * @param n scan control: {@code log2(n)} cells are scanned,
         * unless a stale entry is found, in which case
         * {@code log2(table.length)-1} additional cells are scanned.
         * When called from insertions, this parameter is the number
         * of elements, but when from replaceStaleEntry, it is the
         * table length. (Note: all this could be changed to be either
         * more or less aggressive by weighting n instead of just
         * using straight log n. 但是此版本简单、快速并运行良好。)
         *
         * @return 如果已删除过期的entry,则返回true
         */
        private boolean cleanSomeSlots(int i, int n) {
            boolean removed = false;
            Entry[] tab = table;
            int len = tab.length;
            do {
                // 下个位置
                i = nextIndex(i, len);
                Entry e = tab[i];
                if (e != null && e.get() == null) {
                    // 数组的长度
                    n = len;
                    removed = true;
                    // 清除在i位置过期entry项
                    i = expungeStaleEntry(i);
                }
            } while ( (n >>>= 1) != 0);
            return removed;
        }

        /**
         * 调整table的容量:
         * 1:首先扫描并清除过期entries;
         * 2:清除后容量还不够,则进行2倍方式扩容。
         */
        private void rehash() {
            // 清除所有在table中过期的entry
            expungeStaleEntries();

            // Use lower threshold for doubling to avoid hysteresis
            if (size >= threshold - threshold / 4)
                resize();
        }

        /**
         * table 的容量翻倍
         */
        private void resize() {
            Entry[] oldTab = table;
            int oldLen = oldTab.length;
            // 容量扩增为原来的2倍
            int newLen = oldLen * 2;
            Entry[] newTab = new Entry[newLen];
            int count = 0;

            for (int j = 0; j < oldLen; ++j) {
                Entry e = oldTab[j];
                // 如果 此元素 不为空
                if (e != null) {
                    ThreadLocal<?> k = e.get();
                    if (k == null) {
                        // thread-local 清除此元素
                        e.value = null; // Help the GC
                    } else {
                        int h = k.threadLocalHashCode & (newLen - 1);
                        while (newTab[h] != null)
                            h = nextIndex(h, newLen);
                        newTab[h] = e;
                        count++;
                    }
                }
            }

            setThreshold(newLen);
            size = count;
            table = newTab;
        }

        /**
         * 清除所有在table中过期的entry
         */
        private void expungeStaleEntries() {
            Entry[] tab = table;
            int len = tab.length;
            for (int j = 0; j < len; j++) {
                Entry e = tab[j];
                if (e != null && e.get() == null)
                    expungeStaleEntry(j);
            }
        }
    }
}
上一篇 下一篇

猜你喜欢

热点阅读