工业工程交流威威专辑

风险评估和风险管理的技术工具-统计模型和方法论

2017-02-04  本文已影响62人  威威专栏

风险评估(Risk Assessment)是指在风险事件发生之后,对于风险事件给人们的生活、生命、财产等各个方面造成的影响和损失进行量化评估的工作。

风险无处不在,风险评估和管理在金融、投资、产品、交通、管理决策、健康医疗、生产安全、公共安全等行业领域中较为常见,受到更多的重视,尤其是监管机构和社会公众对于风险事故的理性反应,也反过来要求经营管理者对于风险的科学有效管理。

风险管理举例:某工厂粉尘爆炸、某地化学物质爆炸、金融危机、食品安全事故、某手机、汽车等产品召回事故。

风险管理在各行业存在着不同的技术工具,也有一定的共通性,ISO和IEC等国际标准化组织也有相关的标准文件,本文将首先对共同性的部分做初步分析,方便读者做迁移分析和应用。

首先了解风险管理和分析的初步框架和步骤: 风险和不确定性有关,也和概率有关,所以统计学工具在风险评估中可以提供参考价值。

风险损失、成本和收益的量化分析: 风险和损失的量化分析关系根据实际的行业和风险变量因素各有不同,这里先简要阐述一个简化模型: 首先建立假设线性模型,RL=ax+by+c*z+...., RL=损失, a、b、c等于各风险加权系数,x、y、z等于风险变量。 其中损失可以分为有形损失和无形损失,例如财务损失,物品损失或名誉损失等等。 风险变量可以分为系统性风险和随机性风险。

将各个变量曲线累加后,得到总变量-损失曲线。

建模和分析步骤:

首先识别和筛选风险变量,可以通过头脑风暴、变量清单列举法、主要风险分析、情景分析、结构化假设分析SWIFT、失效模式分析、Delphi法、因果分析、潜在通路缝隙等方法,初步确定潜在风险变量。

选择风险变量可以参考MECE原则,完整列出所有变量,并排除重复变量。

例如下图举例,如果有统计数据支持,可以通过回归分析,相关度分析等工具,删除无效或重复、相关变量。 心理学领域内的因果分析举例:

工程技术领域内的故障树分析举例:

选择相关变量后,如果有相关统计数据作为支持,可以通过回归分析建立模型,使用最小二乘法获得最优模拟曲线,进行后续假设验证。

建立了初步的数学模型之后,可以使用决策树分析方法,确定可能性的风险事件和发生概率,计算出总损失。

在决策树建立时,往往需要结合收益和成本进行综合计算和决策分析,例如下图会加入收益概率和计算。

对于概率确定,可以通过经验或理论分析,或实证数据统计给出初步概率。理论分析需要确定事件的分布类型,基于测试或历史数据,对应根据概率密度函数和数学期望值,设定置信区间,之后更精确量化风险概率。 下图为正态分布示意图,置信区间越大,则离数学期望(平均值)偏离误差越大。

对于部分事件,需要进一步breakdown拆分子变量,得出最终概率,下图是事件树举例,计算出每年发生爆炸的概率:

如果A事件和B事件,C事件存在概率时间相关性,即条件概率,可以使用条件概率分析,例如著名的马克洛夫矩阵分析法:

对于成本、收益和损失的三者量化分析,需要将成本加入计算模型,例如在生产质量管理中,生产工艺管控和质量检测等成本变量随质量控制接受限来确定,质量管控严格程度一定意义上和风险发生概率存在负相关关系,质量要求越高,风险事故发生的可能性越小。

当总收益>总成本,则风险管理措施可行,否则需要从降低成本或提高收益等角度实现合理决策。 降低成本有若干方法,例如可以通过量本利分析、确定固定成本和变动成本曲线,提高产量,摊平质量管理成本。

风险损失不仅仅和概率有关,也和危险程度有关,而危险程度也影响到下述公式的系数,即a=矩阵[概率,危险程度] RL=ax+by+c*z+....

根据危险程度和概率矩阵,具体行业和案例,进行量化加权计分,确定系数值。

上一篇下一篇

猜你喜欢

热点阅读