Android 进程管理篇(五)-调度策略与优先级
2019-08-18 本文已影响0人
Stan_Z
接上篇cpuset,这篇来看看进程优先级与调度策略管理。
一、进程优先级与调度策略
Linux中,优先级号一共有0-139,其中0-99的是RT(实时)进程,100-139的是非实时进程。
数字越低优先级越高。
实时调度:针对0-99的RT进程
- SCHED_FIFO:不同优先级的高的先跑,相同优先级的先来先跑,一旦占据CPU就要到跑完为止。
- SCHED_RR:不同优先级的高的先跑,相同优先级的时间片轮询。
分时调度:针对100-139的普通进程,他们按nice值 -20 - 19来算优先级,越nice优先级越低
- SCHED_NOMAL(SCHED_OTHER):时间片轮询,优先级越高抢占能力越强,越容易获得更多时间片。
- SCHED_BATCH 批处理进程,唤醒不频繁的使用SCHED_BATCH,频繁的适合SCHED_NOMAL。
SCHED_IDLE idle状态低优先级进程调度
二、调度策略与优先级设置
frameworks/base/core/java/android/os/Process.java
public static final int SCHED_OTHER = 0;
public static final int SCHED_FIFO = 1;
public static final int SCHED_RR = 2;
public static final int SCHED_BATCH = 3;
public static final int SCHED_IDLE = 5;
先看Process中调度策略的划分,与上面介绍的一样。
frameworks/base/services/core/java/com/android/server/am/ActivityManagerService.java
static boolean scheduleAsRegularPriority(int tid, boolean suppressLogs) {
try {
Process.setThreadScheduler(tid, Process.SCHED_OTHER, 0);
return true;
} catch (IllegalArgumentException e) {
if (!suppressLogs) {
Slog.w(TAG, "Failed to set scheduling policy, thread does not exist:\n" + e);
}
}
return false;
}
static boolean scheduleAsFifoPriority(int tid, boolean suppressLogs) {
try {
Process.setThreadScheduler(tid, Process.SCHED_FIFO | Process.SCHED_RESET_ON_FORK, 1);
return true;
} catch (IllegalArgumentException e) {
if (!suppressLogs) {
Slog.w(TAG, "Failed to set scheduling policy, thread does not exist:\n" + e);
}
}
return false;
}
首先在AMS中封装了FIFO和NORMAL的两个策略,NORMAL好说,看看FIFO在哪用到
private final boolean applyOomAdjLocked(ProcessRecord app, boolean doingAll, long now,
long nowElapsed) {
…
setProcessGroup(app.pid, processGroup); //这里上篇文章已经讲过了
if (app.curSchedGroup == ProcessList.SCHED_GROUP_TOP_APP) {
// do nothing if we already switched to RT
if (oldSchedGroup != ProcessList.SCHED_GROUP_TOP_APP) {
mVrController.onTopProcChangedLocked(app);
//UI渲染使用的fifo,但是mUseFifoUiScheduling条件需要打开:
//if (SystemProperties.getInt("sys.use_fifo_ui", 0) != 0) {
// mUseFifoUiScheduling = true;
// }
但是getprop看了下,压根就没有设置,那就是并没有使用到fifo策略,可能也并没有什么优化效果吧。
if (mUseFifoUiScheduling) {
// Switch UI pipeline for app to SCHED_FIFO
app.savedPriority = Process.getThreadPriority(app.pid);
scheduleAsFifoPriority(app.pid, /* suppressLogs */true);
if (app.renderThreadTid != 0) {
scheduleAsFifoPriority(app.renderThreadTid,
/* suppressLogs */true);
if (DEBUG_OOM_ADJ) {
Slog.d("UI_FIFO", "Set RenderThread (TID " +
app.renderThreadTid + ") to FIFO");
}
} else {
if (DEBUG_OOM_ADJ) {
Slog.d("UI_FIFO", "Not setting RenderThread TID");
}
}
} else {//如果不调整,那么直接就设置优先级。
// Boost priority for top app UI and render threads
setThreadPriority(app.pid, TOP_APP_PRIORITY_BOOST);
if (app.renderThreadTid != 0) {
try {
setThreadPriority(app.renderThreadTid,
TOP_APP_PRIORITY_BOOST);
} catch (IllegalArgumentException e) {
// thread died, ignore
}
}
}
}
}
...
}
这里Process.setThreadScheduler并没有太多的应用,我们直接来看优先级设置吧。else中将top app的UI线程与render线程都设置为TOP_APP_PRIORITY_BOOST优先级,nice值为-10,非常高。
frameworks/base/core/java/android/os/Process.java
public static final int THREAD_PRIORITY_DEFAULT = 0;
public static final int THREAD_PRIORITY_LOWEST = 19;
public static final int THREAD_PRIORITY_BACKGROUND = 10;
public static final int THREAD_PRIORITY_FOREGROUND = -2;
public static final int THREAD_PRIORITY_DISPLAY = -4;
public static final int THREAD_PRIORITY_URGENT_DISPLAY = -8;
public static final int THREAD_PRIORITY_AUDIO = -16;
public static final int THREAD_PRIORITY_URGENT_AUDIO = -19;
public static final int THREAD_PRIORITY_MORE_FAVORABLE = -1;
public static final int THREAD_PRIORITY_LESS_FAVORABLE = +1;
而TOP_APP_PRIORITY_BOOST=-10 定义在AMS中。
public static final native void setThreadPriority(int priority)
throws IllegalArgumentException, SecurityException;
setThreadPriority在Process中是native方法,那直接jni进去
frameworks/base/core/jni/android_util_Process.cpp
void android_os_Process_setThreadPriority(JNIEnv* env, jobject clazz,
jint pid, jint pri)
{
#if GUARD_THREAD_PRIORITY
// if we're putting the current thread into the background, check the TLS
// to make sure this thread isn't guarded. If it is, raise an exception.
if (pri >= ANDROID_PRIORITY_BACKGROUND) {
if (pid == gettid()) {
void* bgOk = pthread_getspecific(gBgKey);
if (bgOk == ((void*)0xbaad)) {
ALOGE("Thread marked fg-only put self in background!");
jniThrowException(env, "java/lang/SecurityException", "May not put this thread into background");
return;
}
}
}
#endif
int rc = androidSetThreadPriority(pid, pri);//设置thread优先级
if (rc != 0) {
if (rc == INVALID_OPERATION) {
signalExceptionForPriorityError(env, errno, pid);
} else {
signalExceptionForGroupError(env, errno, pid);
}
}
//ALOGI("Setting priority of %" PRId32 ": %" PRId32 ", getpriority returns %d\n",
// pid, pri, getpriority(PRIO_PROCESS, pid));
}
这里主要调用androidSetThreadPriority方法
system/core/libutils/Threads.cpp
int androidSetThreadPriority(pid_t tid, int pri)
{
int rc = 0;
int lasterr = 0;
//如果priority大于等于BACKGROUND,则设置为BACKGROUND类型的调度策略
if (pri >= ANDROID_PRIORITY_BACKGROUND) {
rc = set_sched_policy(tid, SP_BACKGROUND);
//如果priority小于BACKGROUND,且当线程为BACKGROUND类型,则设置为FOREGROUND类型。
} else if (getpriority(PRIO_PROCESS, tid) >= ANDROID_PRIORITY_BACKGROUND) {
rc = set_sched_policy(tid, SP_FOREGROUND);
}
if (rc) {
lasterr = errno;
}
if (setpriority(PRIO_PROCESS, tid, pri) < 0) {//这里最终设置优先级
rc = INVALID_OPERATION;
} else {
errno = lasterr;
}
return rc;
}
这里通过set_sched_policy来调整调度策略,并通过setpriority设置进程优先级。这里不特意区分进程与线程了,反正在linux中都是进程。
system/core/libcutils/sched_policy.cpp
int set_sched_policy(int tid, SchedPolicy policy)
{
if (tid == 0) {
tid = gettid();
}
policy = _policy(policy);
pthread_once(&the_once, __initialize);
#if POLICY_DEBUG
char statfile[64];
char statline[1024];
char thread_name[255];
snprintf(statfile, sizeof(statfile), "/proc/%d/stat", tid);
memset(thread_name, 0, sizeof(thread_name));
int fd = open(statfile, O_RDONLY | O_CLOEXEC);
if (fd >= 0) {
int rc = read(fd, statline, 1023);
close(fd);
statline[rc] = 0;
char *p = statline;
char *q;
for (p = statline; *p != '('; p++);
p++;
for (q = p; *q != ')'; q++);
strncpy(thread_name, p, (q-p));
}
switch (policy) {
case SP_BACKGROUND:
SLOGD("vvv tid %d (%s)", tid, thread_name);
break;
case SP_FOREGROUND:
case SP_AUDIO_APP:
case SP_AUDIO_SYS:
case SP_TOP_APP:
SLOGD("^^^ tid %d (%s)", tid, thread_name);
break;
case SP_SYSTEM:
SLOGD("/// tid %d (%s)", tid, thread_name);
break;
default:
SLOGD("??? tid %d (%s)", tid, thread_name);
break;
}
#endif
if (schedboost_enabled()) {
int boost_fd = -1;
switch (policy) {
case SP_BACKGROUND:
boost_fd = bg_schedboost_fd;
break;
case SP_FOREGROUND:
case SP_AUDIO_APP:
case SP_AUDIO_SYS:
boost_fd = fg_schedboost_fd;
break;
case SP_TOP_APP:
boost_fd = ta_schedboost_fd;
break;
default:
boost_fd = -1;
break;
}
//add_tid_to_cgroup又继续写节点
if (boost_fd > 0 && add_tid_to_cgroup(tid, boost_fd) != 0) {
if (errno != ESRCH && errno != ENOENT)
return -errno;
}
}
//timerslack是个睡眠策略,就是至少要睡这么长时间才能醒来,属于省电方面的优化策略
if (__sys_supports_timerslack) {
set_timerslack_ns(tid, policy == SP_BACKGROUND ?
TIMER_SLACK_BG : TIMER_SLACK_FG);
}
return 0;
}
这里与前面的cpuset非常相似,依然是写节点,节点前面也提了就是:
if (schedboost_enabled()) {//这里对应的是sched路径
filename = "/dev/stune/top-app/tasks";
ta_schedboost_fd = open(filename, O_WRONLY | O_CLOEXEC);
filename = "/dev/stune/foreground/tasks";
fg_schedboost_fd = open(filename, O_WRONLY | O_CLOEXEC);
filename = "/dev/stune/background/tasks";
bg_schedboost_fd = open(filename, O_WRONLY | O_CLOEXEC);
}
那么这里又引入了一个schedtune子系统,简单介绍下:
schedtune是ARM/Linaro为了EAS新增的一个子系统,主要用来控制进程调度选择CPU以及boost触发。通过权重来分配CPU负载能力来实现快速运行。高权重意味着会享受到更好的cpu负载来处理对应的任务,换句话说你能享受相对更好的cpu运行性能。
简单梳理下schedtune和不同类型SchedPolicy之间的对应关系:
/dev/stune/top-app/tasks SP_TOP_APP
/dev/stune/foreground/tasks SP_FOREGROUND
/dev/stune/background/tasks SP_BACKGROUND
看下具体文件夹内容:
/dev/stune/top-app # ls -al
total 0
drwxr-xr-x 2 system system 0 1970-05-22 03:35 .
dr-xr-xr-x 7 system system 0 1970-05-22 03:35 ..
-rw-r--r-- 1 root root 0 2019-08-17 18:06 cgroup.clone_children
-rw-r--r-- 1 root root 0 2019-08-17 18:06 cgroup.procs
-rw-r--r-- 1 root root 0 2019-08-17 18:06 notify_on_release
-rw-r--r-- 1 root root 0 2019-08-12 13:41 schedtune.boost
-rw-r--r-- 1 root root 0 1970-05-22 03:35 schedtune.colocate
-rw-r--r-- 1 root root 0 2019-08-12 13:41 schedtune.prefer_idle
-rw-r--r-- 1 root root 0 1970-05-22 03:35 schedtune.sched_boost_no_override
-rw-rw-r-- 1 system system 0 1970-05-22 03:35 tasks
系统配置:
这里/dev/stune相关配置只做了这么一个
# choose idle CPU for top app tasks
echo 1 > /dev/stune/top-app/schedtune.prefer_idle