Hashmap
HashMap是一个用于存储Key-Value键值对的集合,每一个键值对也叫做Entry。这些个键值对(Entry)分散存储在一个数组当中,这个数组就是HashMap的主干。
HashMap数组每一个元素的初始值都是Null。
对于HashMap,我们最常使用的是两个方法:Get 和 Put
Put
调用Put方法的时候发生了什么呢?
比如调用 hashMap.put("apple", 0) ,插入一个Key为“apple"的元素。这时候我们需要利用一个哈希函数来确定Entry的插入位置(index):
但是,因为HashMap的长度是有限的,当插入的Entry越来越多时,再完美的Hash函数也难免会出现index冲突的情况。比如下面这样:
image.png
HashMap数组的每一个元素不止是一个Entry对象,也是一个链表的头节点。每一个Entry对象通过Next指针指向它的下一个Entry节点。当新来的Entry映射到冲突的数组位置时,只需要插入到对应的链表即可:
image.png
Get
使用Get方法根据Key来查找Value的时候,发生了什么呢?
首先会把输入的Key做一次Hash映射,得到对应的index:
index = Hash(“apple”)
由于刚才所说的Hash冲突,同一个位置有可能匹配到多个Entry,这时候就需要顺着对应链表的头节点,一个一个向下来查找。假设我们要查找的Key是“apple”:
image.png
第一步,我们查看的是头节点Entry6,Entry6的Key是banana,显然不是我们要找的结果。
第二步,我们查看的是Next节点Entry1,Entry1的Key是apple,正是我们要找的结果。
之所以把Entry6放在头节点,是因为HashMap的发明者认为,后插入的Entry被查找的可能性更大。
HashMap默认初始长度是16,并且每次拓展或手动初始化时长度必须是2的幂
从key映射到HashMap的对应位置会用到一个hash函数
如何实现一个尽量均匀分布的Hash函数呢?我们通过利用Key的HashCode值来做某种运算。取模方法简单但是效率低所以一般采用位运算的方式
**index = HashCode(Key) & (Length - 1) **
1.计算book的hashcode,结果为十进制的3029737,二进制的101110001110101110 1001。
2.假定HashMap长度是默认的16,计算Length-1的结果为十进制的15,二进制的1111。
3.把以上两个结果做与运算,101110001110101110 1001 & 1111 = 1001,十进制是9,所以 index=9。
可以说,Hash算法最终得到的index结果,完全取决于Key的Hashcode值的最后几位。
之所以长度为16或其他2的幂因为符合Hash算法均匀分布的原则,当HashMap长度为10的时候,有些index结果的出现几率会更大,而有些index结果永远不会出现(比如0111)!
扩容
HashMap的容量是有限的。当经过多次元素插入,使得HashMap达到一定饱和度时,Key映射位置发生冲突的几率会逐渐提高。这时候,HashMap需要扩展它的长度,也就是进行Resize
影响发生Resize的因素有两个:
1.Capacity
HashMap的当前长度。HashMap的长度是2的幂。
2.LoadFactor
HashMap负载因子,默认值为0.75f。
衡量HashMap是否进行Resize的条件如下:
HashMap.Size >= Capacity * LoadFactor
1.扩容
创建一个新的Entry空数组,长度是原数组的2倍。
2.ReHash
遍历原Entry数组,把所有的Entry重新Hash到新数组。为什么要重新Hash呢?因为长度扩大以后,Hash的规则也随之改变。
让我们回顾一下Hash公式:
index = HashCode(Key) & (Length - 1)
当原数组长度为8时,Hash运算是和111B做与运算;新数组长度为16,Hash运算是和1111B做与运算。Hash结果显然不同。
Resize前的HashMap: image.png Resize后的HashMap: image.png高并发下的hash扩容
内容过于烧脑 请移步这里
假设一个HashMap已经到了Resize的临界点。此时有两个线程A和B,在同一时刻对HashMap进行Put操作:
image.png
此时达到Resize条件,两个线程各自进行Rezie的第一步,也就是扩容:
image.png
本文转自漫画:什么是HashMap?,有侵权请联系删除