利用word2vec对关键词进行聚类
姓名:李嘉蔚学号:16020520034
【嵌牛导读】:按照一般的思路,可以用新闻ID向量来表示某个关键词,这就像广告推荐系统里面用用户访问类别向量来表示用户一样,然后就可以用kmeans的方法进行聚类了。不过对于新闻来说存在一个问题,那就量太大,如果给你十万篇新闻,那每一个关键词将需要十万维的向量表示,随着新闻数迅速增加,那维度就更大了,这计算起来难度太大。于是,这个方法思路简单但是不可行。
好在我们有word2vec这个工具,这是google的一个开源工具,能够仅仅根据输入的词的集合计算出词与词直接的距离,既然距离知道了自然也就能聚类了,而且这个工具本身就自带了聚类功能,很是强大。下面正式介绍如何使用该工具进行词的分析,关键词分析和聚类自然也就包含其中了。word2vec官网地址看这里:https://code.google.com/p/word2vec/
【嵌牛鼻子】:word2vec工具。
【嵌牛提问】:怎么用word2vec?效果如何?
【嵌牛正文】:
1、寻找语料
要分析,第一步肯定是收集数据,这里不可能一下子就得到所有词的集合,最常见的方法是自己写个爬虫去收集网页上的数据。不过,如果不需要实时性,我们可以使用别人提供好的网页数据,例如搜狗2012年6月到7月的新闻数据:http://www.sogou.com/labs/dl/ca.html 直接下载完整版,注册一个帐号,然后用ftp下载,ubuntu下推荐用filezilla
利用word2vec对关键词进行聚类 利用word2vec对关键词进行聚类 利用word2vec对关键词进行聚类2、分词
我们得到的1.5的数据是包含一些html标签的,我们只需要新闻内容,也就是content其中的值。首先可以通过简单的命令把非content的标签干掉
cat news_tensite_xml.dat | iconv -f gbk -t utf-8 -c | grep "<content>" > corpus.txt
得到了corpus.txt文件只含有content标签之间的内容,再对内容进行分词即可,这里推荐使用之前提到过的ANSJ,没听过的看这里:http://blog.csdn.net/zhaoxinfan/article/details/10403917
下面是调用ANSJ进行分词的程序:
import java.util.HashSet;
import java.util.List;
import java.util.Set;
import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileReader;
import java.io.FileWriter;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.io.StringReader;
import java.util.Iterator;
import love.cq.util.IOUtil;
import org.ansj.app.newWord.LearnTool;
import org.ansj.domain.Term;
import org.ansj.recognition.NatureRecognition;
import org.ansj.splitWord.Analysis;
import org.ansj.splitWord.analysis.NlpAnalysis;
import org.ansj.splitWord.analysis.ToAnalysis;
import org.ansj.util.*;
import org.ansj.recognition.*;
public class test {
public static final String TAG_START_CONTENT = "<content>";
public static final String TAG_END_CONTENT = "</content>";
public static void main(String[] args) {
String temp = null ;
BufferedReader reader = null;
PrintWriter pw = null;
try {
reader = IOUtil.getReader("corpus.txt", "UTF-8") ;
ToAnalysis.parse("test 123 孙") ;
pw = new PrintWriter("resultbig.txt");
long start = System.currentTimeMillis() ;
int allCount =0 ;
int termcnt = 0;
Set<String> set = new HashSet<String>();
while((temp=reader.readLine())!=null){
temp = temp.trim();
if (temp.startsWith(TAG_START_CONTENT)) {
int end = temp.indexOf(TAG_END_CONTENT);
String content = temp.substring(TAG_START_CONTENT.length(), end);
//System.out.println(content);
if (content.length() > 0) {
allCount += content.length() ;
List<Term> result = ToAnalysis.parse(content);
for (Term term: result) {
String item = term.getName().trim();
if (item.length() > 0) {
termcnt++;
pw.print(item.trim() + " ");
set.add(item);
}
}
pw.println();
}
}
}
long end = System.currentTimeMillis() ;
System.out.println("共" + termcnt + "个term," + set.size() + "个不同的词,共 "
+allCount+" 个字符,每秒处理了:"+(allCount*1000.0/(end-start)));
} catch (IOException e) {
e.printStackTrace();
} finally {
if (null != reader) {
try {
reader.close();
} catch (IOException e) {
e.printStackTrace();
}
}
if (null != pw) {
pw.close();
}
}
}
}
经过对新闻内容分词之后,得到的输出文件resultbig.txt有2.2G,其中的格式如下:
利用word2vec对关键词进行聚类这个文件就是word2vec工具的输入文件
3、本地运行word2vec进行分析
首先要做的肯定是从官网上下载word2vec的源码:http://word2vec.googlecode.com/svn/trunk/ ,然后把其中makefile文件的.txt后缀去掉,在终端下执行make操作,这时能发现word2vec文件夹下多了好几个东西。接下来就是输入resultbig.txt进行分析了:
./word2vec -train resultbig.txt -output vectors.bin -cbow 0 -size 200 -window 5 -negative 0 -hs 1 -sample 1e-3 -threads 12 -binary 1
这里我们指定输出为vectors.bin文件,显然输出到文件便于以后重复利用,省得每次都要计算一遍,要知道处理这2.2G的词集合需要接近半个小时的时间:
利用word2vec对关键词进行聚类下面再输入计算距离的命令即可计算与每个词最接近的词了:
./distance vectors.bin
这里列出一些有意思的输出:
利用word2vec对关键词进行聚类 利用word2vec对关键词进行聚类 利用word2vec对关键词进行聚类 利用word2vec对关键词进行聚类 利用word2vec对关键词进行聚类 利用word2vec对关键词进行聚类 利用word2vec对关键词进行聚类 利用word2vec对关键词进行聚类 利用word2vec对关键词进行聚类怎么样,是不是觉得还挺靠谱的?补充一点,由于word2vec计算的是余弦值,距离范围为0-1之间,值越大代表这两个词关联度越高,所以越排在上面的词与输入的词越紧密。
至于聚类,只需要另一个命令即可:
./word2vec -train resultbig.txt -output classes.txt -cbow 0 -size 200 -window 5 -negative 0 -hs 1 -sample 1e-3 -threads 12 -classes 500
按类别排序:
sort classes.txt -k 2 -n > classes.sorted.txt
后记:如果想要了解word2vec的实现原理,应该读一读官网后面的三篇参考文献。显然,最主要的应该是这篇: Distributed Representations of Words and Phrases and their Compositionality
这篇文章的基础是 Natural Language Processing (almost) from Scratch 其中第四部分提到了把deep learning用在NLP上。
最后感谢晓阳童鞋向我提到这个工具,不愧是立志要成为NLP专家的人。
附:一个在线测试的网站,貌似是一位清华教授做的:http://cikuapi.com/index.php