C.hier: Class hierarchies (OOP)[
C.hierclass: Designing classes in a hierarchy:
C.126: An abstract class typically doesn’t need a user-written constructor
- Reason An abstract class typically does not have any data for a constructor to initialize.Example
class Shape {
public:
// no user-written constructor needed in abstract base class
virtual Point center() const = 0; // pure virtual
virtual void move(Point to) = 0;
// ... more pure virtual functions...
virtual ~Shape() {} // destructor
};
class Circle : public Shape {
public:
Circle(Point p, int rad); // constructor in derived class
Point center() const override { return x; }
};
- Exception
-- A base class constructor that does work, such as registering an object somewhere, might need a constructor.
-- In extremely rare cases, you might find it reasonable for an abstract class to have a bit of data shared by all derived classes (e.g., use statistics data, debug information, etc.); such classes tend to have constructors. But be warned: Such
classes also tend to be prone to requiring virtual inheritance. - Enforcement
Flag abstract classes with constructors.
C.127: A class with a virtual function should have a virtual or protected destructor
Reason
A class with a virtual function is usually (and in general) used via a pointer to base. Usually, the last user has to call delete on a pointer to base, often via a smart pointer to base, so the destructor should be public and virtual. Less commonly, if deletion through a pointer to base is not intended to be supported, the destructor should be protected and non-virtual; see C.35.
Example, bad
struct B {
virtual int f() = 0;
// ... no user-written destructor, defaults to public non-virtual ...
};
// bad: derived from a class without a virtual destructor
struct D : B {
string s {"default"};
// ...
};
void use()
{
unique_ptr<B> p = make_unique<D>();
// ...
} // undefined behavior, might call B::~B only and leak the string
Note
There are people who don’t follow this rule because they plan to use a class only through a shared_ptr
: std::shared_ptr<B> p = std::make_shared<D>(args);
Here, the shared pointer will take care of deletion, so no leak will occur from an inappropriate delete
of the base. People who do this consistently can get a false positive, but the rule is important – what if one was allocated using make_unique
? It’s not safe unless the author of B
ensures that it can never be misused, such as by making all constructors private and providing a factory function to enforce the allocation with make_shared
.
Enforcement
- A class with any virtual functions should have a destructor that is either public and virtual or else protected and non-virtual.
- Flag
delete
of a class with a virtual function but no virtual destructor.
这个是经常看到的很重要的一条,通常的case就是base class 的dtor要public and virtual,或者protected and non-virtual(少见)
C.128: Virtual functions should specify exactly one of virtual
, override
, or final
Reason
Readability. Detection of mistakes. Writing explicit virtual
, override
, or final
is self-documenting and enables the compiler to catch mismatch of types and/or names between base and derived classes. However, writing more than one of these three is both redundant and a potential source of errors.
It’s simple and clear:
-
virtual
means exactly and only “this is a new virtual function.” -
override
means exactly and only “this is a non-final overrider.” -
final
means exactly and only “this is a final overrider.”
Example, bad
struct B {
void f1(int);
virtual void f2(int) const;
virtual void f3(int);
// ...
};
struct D : B {
void f1(int); // bad (hope for a warning): D::f1() hides B::f1()
void f2(int) const; // bad (but conventional and valid): no explicit override
void f3(double); // bad (hope for a warning): D::f3() hides B::f3()
// ...
};
Example, good
struct Better : B {
void f1(int) override; // error (caught): Better::f1() hides B::f1()
void f2(int) const override;
void f3(double) override; // error (caught): Better::f3() hides B::f3()
// ...
};
Discussion
We want to eliminate two particular classes of errors:
- implicit virtual: the programmer intended the function to be implicitly virtual and it is (but readers of the code can’t tell); or the programmer intended the function to be implicitly virtual but it isn’t (e.g., because of a subtle parameter list mismatch); or the programmer did not intend the function to be virtual but it is (because it happens to have the same signature as a virtual in the base class)
- implicit override: the programmer intended the function to be implicitly an overrider and it is (but readers of the code can’t tell); or the programmer intended the function to be implicitly an overrider but it isn’t (e.g., because of a subtle parameter list mismatch); or the programmer did not intend the function to be an overrider but it is (because it happens to have the same signature as a virtual in the base class – note this problem arises whether or not the function is explicitly declared virtual, because the programmer might have intended to create either a new virtual function or a new non-virtual function)
Note: On a class defined as final
, it doesn’t matter whether you put override
or final
on an individual virtual function.
Note: Use final
on functions sparingly. It does not necessarily lead to optimization, and it precludes further overriding.
Enforcement
- Compare virtual function names in base and derived classes and flag uses of the same name that does not override.
- Flag overrides with neither
override
norfinal
. - Flag function declarations that use more than one of
virtual
,override
, andfinal
.
很简单明确,就是explicitly 写清楚virtual, override或者final. 既增加readability又能catch错误.