大数据开源OLAP系统比较:ClickHouse, Druid,

2018-11-16  本文已影响0人  MeazZa

以下内容来自对此Blog文章内容的整理和总结:
https://medium.com/@leventov/comparison-of-the-open-source-olap-systems-for-big-data-clickhouse-druid-and-pinot-8e042a5ed1c7?email=zhouwei.hit%40163.com&g-recaptcha-response=03AHqfIOmSujGHzZiiVvpWmVK73WjjnwhKdJdZoe2Z_c25ddPUnyJKebeCy-Cv3cMJ8W48nnBCJpco53XvxTOfpZLzz1KC7XdHdzIAN_zFXfX3n0Ufvv6cH4kTen1HgRewsi2jGbk9lJGrRyBq3SzfnXJt6R5yU-1n6ev54BgiMJGUP8dbwVrDfNyqp_BAq9sBO37iPugvpxb9uJDpTOrJ-hVMV_yws2gezrCZuWWqV1zVmc1ixjMaSmv_B_ZHLNAL3y_MCumdQ0BlwXjqSmg5Yds_LVH62bEPEQ

ClickHouse, Druid, Pinot Similarity:

  1. Coupled architecture
  2. Run queries fast:
    a. Their own format for storing data with indexes and tightly integrated with their query processing engines
    b. Data distributed relatively statically between the nodes
  3. No points updates and deletes:
    a. More efficiently columnar compression and more aggressive indexes
    b. ClickHouse supports updates and deletes
  4. Big data style ingestions: both realtime data from Kafka and batch data
  5. Proven at large scale: ten thousands of CPU cores / thousands of machines
  6. Immature

Differences Between ClickHouse and Druid/Pinot:

  1. Data Management
  1. Data Replication
  1. Data Ingestion
  1. Query Execution

Differences between Druid and Pinot

  1. Segment management
  1. Predicate down
  1. Pluggable
  1. Data Format/Query Execution Engine
  1. Segment Assignment(Balancing) Algorithm
  1. Fault tolerant
  1. Tiering
上一篇 下一篇

猜你喜欢

热点阅读