Objective-C RunTime

iOS-底层原理 05:内存对齐原理

2020-09-08  本文已影响0人  Style_月月

iOS 底层原理 文章汇总

在探讨内存对齐原理之前,首先介绍下iOS中获取内存大小的三种方式

获取内存大小的三种方式

获取内存大小的三种方式分别是:

sizeof

class_getInstanceSize

这个方法在iOS-底层原理 02:alloc & init & new 源码分析分析时就已经分析了,是runtime提供的api,用于获取类的实例对象所占用的内存大小,并返回具体的字节数,其本质就是获取实例对象中成员变量的内存大小

malloc_size

这个函数是获取系统实际分配的内存大小

可以通过下面代码的输出结果来验证我们上面的说法

#import <Foundation/Foundation.h>
#import "LGPerson.h"
#import <objc/runtime.h>
#import <malloc/malloc.h>

int main(int argc, const char * argv[]) {
    @autoreleasepool {
        NSObject *objc = [[NSObject alloc] init];
        NSLog(@"objc对象类型占用的内存大小:%lu",sizeof(objc));
        NSLog(@"objc对象实际占用的内存大小:%lu",class_getInstanceSize([objc class]));
        NSLog(@"objc对象实际分配的内存大小:%lu",malloc_size((__bridge const void*)(objc)));
    }
    return 0;
}

以下是打印结果


三种获取内存大小的打印结果

总结

结构体内存对齐

接下来,我们首先定义两个结构体,分别计算他们的内存大小,以此来引入今天的正题:内存对齐原理

//1、定义两个结构体
struct Mystruct1{
    char a;     //1字节
    double b;   //8字节
    int c;      //4字节
    short d;    //2字节
}Mystruct1;

struct Mystruct2{
    double b;   //8字节
    int c;      //4字节
    short d;    //2字节
    char a;     //1字节
}Mystruct2;

//计算 结构体占用的内存大小
NSLog(@"%lu-%lu",sizeof(Mystruct1),sizeof(Mystruct2));

以下是输出结果


image

从打印结果我们可以看出一个问题,两个结构体乍一看,没什么区别,其中定义的变量 和 变量类型都是一致的,唯一的区别只是在于定义变量的顺序不一致,那为什么他们做占用的内存大小不相等呢?其实这就是iOS中的内存字节对齐现象

内存对齐规则

每个特定平台上的编译器都有自己的默认“对齐系数”(也叫对齐模数)。程序员可以通过预编译命令#pragma pack(n),n=1,2,4,8,16来改变这一系数,其中的n就是你要指定的“对齐系数”。在ios中,Xcode默认为#pragma pack(8),即8字节对齐

一般内存对齐的原则主要有3点,可以回看iOS-底层原理 02:alloc & init & new 源码分析中的说明,

可以将内存对齐原则可以理解为以下两点:

验证对齐规则

下表是各种数据类型在ios中的占用内存大小,根据对应类型来计算结构体中内存大小


数据类型对应的字节数表格

我们可以通过下图图来说明下为什么两个结构体MyStruct1 & MyStruct2的内存大小打印不一致的情况,如图所示

结构体对应的存储情况

结构体MyStruct1 内存大小计算

根据内存对齐规则计算MyStruct1的内存大小,详解过程如下:

因此MyStruct1的需要的内存大小为 15字节,而MyStruct1中最大变量的字节数为8,所以 MyStruct1 实际的内存大小必须是 8 的整数倍,18向上取整到24,主要是因为24是8的整数倍,所以 sizeof(MyStruct1) 的结果是 24

结构体MyStruct2 内存大小计算

根据内存对齐规则计算MyStruct2的内存大小,详解过程如下:

因此MyStruct2的需要的内存大小为 15字节,而MyStruct1中最大变量的字节数为8,所以 MyStruct2 实际的内存大小必须是 8 的整数倍,15向上取整到16,主要是因为16是8的整数倍,所以 sizeof(MyStruct2) 的结果是 16

结构体嵌套结构体

上面的两个结构体只是简单的定义数据成员,下面来一个比较复杂的,结构体中嵌套结构体的内存大小计算情况

//1、结构体嵌套结构体
struct Mystruct3{
    double b;   //8字节
    int c;      //4字节
    short d;    //2字节
    char a;     //1字节
    struct Mystruct2 str; 
}Mystruct3;

//2、打印 Mystruct3 的内存大小
NSLog(@"Mystruct3内存大小:%lu", sizeof(Mystruct3));
NSLog(@"Mystruct3中结构体成员内存大小:%lu", sizeof(Mystruct3.str));

打印 的结果如下所示


image

因此MyStruct3的需要的内存大小为 32字节,而MyStruct3中最大变量为str, 其最大成员内存字节数为8,根据内存对齐原则,所以 MyStruct3 实际的内存大小必须是 8 的整数倍,32正好是8的整数倍,所以 sizeof(MyStruct3) 的结果是 32

其内存存储情况如下图所示


结构体嵌套结构体的内存存储情况

二次验证

为了保险起见,我们再定义一个结构体,来验证我们结构体嵌套的内存大小计算说明

struct Mystruct4{
    int a;              //4字节 min(0,4)--- (0,1,2,3)
    struct Mystruct5{   //从4开始,存储开始位置必须是最大的整数倍(最大成员为8),min(4,8)不符合 4,5,6,7,8 -- min(8,8)满足,从8开始存储
        double b;       //8字节 min(8,8)  --- (8,9,10,11,12,13,14,15)
        short c;         //1字节,从16开始,min(16,1) -- (16,17)
    }Mystruct5;
}Mystruct4;

分析如下

因此Mystruct4中需要的内存大小是 18字节,根据内存对其原则二,Mystruct4实际的内存大小必须是Mystruct5最大成员b的整数倍,即必须是8的整数倍,所以sizeof(Mystruct4) 的结果是 24

以下是运行结果的打印,以此来印证24这个内存大小

内存优化(属性重排)

MyStruct1 通过内存字节对齐原则,增加了9个字节,而MyStruct2通过内存字节对齐原则,通过4+2+1的组合,只需要补齐一个字节即可满足字节对齐规则,这里得出一个结论结构体内存大小与结构体成员内存大小的顺序有关

以下面这个例子来进行说明 苹果中属性重排,即内存优化

@interface CJLPerson : NSObject

@property (nonatomic, copy) NSString *name;
@property (nonatomic, copy) NSString *nickName;
// @property (nonatomic, copy) NSString *hobby;
@property (nonatomic, assign) int age;
@property (nonatomic, assign) long height;

@property (nonatomic) char c1;
@property (nonatomic) char c2;
@end

@implementation CJLPerson

@end
int main(int argc, char * argv[]) {
    @autoreleasepool {
        CJLPerson *person = [CJLPerson alloc];
        person.name      = @"Cooci";
        person.nickName  = @"KC";
        person.age       = 18;
        person.c1        = 'a';
        person.c2        = 'b';

        NSLog(@"%@",person);
    }
    return 0;
}

下图是CJLPerson的内存分布情况


CJLPerson内存存储情况

注意:
1、char类型的数据读取出来是以ASCII码的形式显示
2、图片中地址为0x0000000000000000,表示person中还有属性未赋值

总结

所以,这里可以总结下苹果中的内存对齐思想:

字节对齐到底采用多少字节对齐?

到目前为止,我们在前文既提到了8字节对齐,也提及了16字节对齐,那我们到底采用哪种字节对齐呢?

我们可以通过objc4中class_getInstanceSize的源码来进行分析

/** 
 * Returns the size of instances of a class.
 * 
 * @param cls A class object.
 * 
 * @return The size in bytes of instances of the class \e cls, or \c 0 if \e cls is \c Nil.
 */
OBJC_EXPORT size_t
class_getInstanceSize(Class _Nullable cls) 
    OBJC_AVAILABLE(10.5, 2.0, 9.0, 1.0, 2.0);

⬇️

size_t class_getInstanceSize(Class cls)
{
    if (!cls) return 0;
    return cls->alignedInstanceSize();
}

⬇️

// Class's ivar size rounded up to a pointer-size boundary.
uint32_t alignedInstanceSize() const {
    return word_align(unalignedInstanceSize());
}

⬇️

static inline uint32_t word_align(uint32_t x) {
    //x+7 & (~7) --> 8字节对齐
    return (x + WORD_MASK) & ~WORD_MASK;
}


//其中 WORD_MASK 为
#   define WORD_MASK 7UL

通过源码可知:

总结
综合前文提及的获取内存大小的方式

内存对齐算法

目前已知的16字节内存对齐算法有两种

align16: 16字节对齐算法

这个算法的思想已经在iOS-底层原理 02:alloc & init & new 源码分析中有所提及

static inline size_t align16(size_t x) {
    return (x + size_t(15)) & ~size_t(15);
}

segregated_size_to_fit: 16字节对齐算法

#define SHIFT_NANO_QUANTUM      4
#define NANO_REGIME_QUANTA_SIZE (1 << SHIFT_NANO_QUANTUM)   // 16

static MALLOC_INLINE size_t
segregated_size_to_fit(nanozone_t *nanozone, size_t size, size_t *pKey)
{
    size_t k, slot_bytes;

    if (0 == size) {
        size = NANO_REGIME_QUANTA_SIZE; // Historical behavior
    }
    k = (size + NANO_REGIME_QUANTA_SIZE - 1) >> SHIFT_NANO_QUANTUM; // round up and shift for number of quanta
    slot_bytes = k << SHIFT_NANO_QUANTUM;                           // multiply by power of two quanta size
    *pKey = k - 1;                                                  // Zero-based!

    return slot_bytes;
}

算法原理:k + 15 >> 4 << 4 ,其中 右移4 + 左移4相当于将后4位抹零,跟 k/16 * 16一样 ,是16字节对齐算法,小于16就成0了

以 k = 2为例,如下图所示


libmalloc中16字节对齐算法原理
上一篇 下一篇

猜你喜欢

热点阅读