Pytorch 2021-11-06
Data :
- API : torch.utils.data.DataLoader , torch.utils.data.Dataset.
Pytorch offers domain-specific libraries such as TorchText,TorchVision, TorchAudio
training_data = datasets.FashionMNIST(
root = ''data'',
train = True,
download = True,
transform = ToTensor(),
)
test_data = datasets.FashionMNIST(
root = "data",
train = False,
download = True,
transform = ToTensor()
)
We pass the Dataset as an argument to DataLoader. This wraps an iterable over our dataset, and supports automatic batching, sampling, shuffling and multiprocess data loading. Here we define a batch size of 64, i.e. each element in the dataloader iterable will return a batch of 64 features and labels.
batch_size = 64
train_dataloader = DataLoader(training_data, batch_size = batch_size)
test_dataloader = DataLoader(test_data, batch_size = batch_size)
for X,y in test_dataloader:
print("Shape of X [N,C,H,W]: ", X.shape)
print("Shape of y : ", y.shape , y.dtype)
break
Creating Models
Get cpu or gpu device for training.
device = "cuda" if torch.cuda.is_available() else "cpu"
print("Using {} device".format(device))
define model
class NeuralNetwork(nn.Module):
def init(self):
super(NeuralNetwork, self).init()
self.flatten = nn.Flatten()
self.linear_relu_stack = nn.Sequential(
nn.Linear(28 * 28 , 512),
nn.ReLU(),
nn.Linear(512,512),
nn.ReLU(),
nn.Linear(512,10)
)
def forward(self,x):
x = self.flatten(x)
logits = self.linear_relu_stack(x)
return logits
model = NeuralNetwork().to(device)
print(model)
Out:
Using cuda device
NeuralNetwork(
(flatten): Flatten(start_dim=1, end_dim=-1)
(linear_relu_stack): Sequential(
(0): Linear(in_features=784, out_features=512, bias=True)
(1): ReLU()
(2): Linear(in_features=512, out_features=512, bias=True)
(3): ReLU()
(4): Linear(in_features=512, out_features=10, bias=True)
)
)
Optimizing the Model Parameters
To train a model , we need a loss function and an optimizer.
loss_fn = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(),lr = le-3)
In a single training loop , the method makes predictions on the training dataset(fed to it in batches), and backpropagateds the prediction error to adjust the model's parameters.
def train(dataloader, model, loss_fn, optimizer):
size = len(dataloader.dataset)
model.train()
for batch,(X,y) in enumerate(dataloader):
X,y = X.to(device), y.to(device)
pred = model(X)
loss = loss_fn(pred,y)
#Backpropagation
optimizer.zero_grad()
loss.backward()
optimizer.step()
if batch % 100 == 0:
loss, current = loss.item(), batch*len(X)
print(f " loss:{loss: >7f } [ {current:>5d } / {size:> 5d}]")
def test(dataloader,model,loss_fn):
size = len(dataloader.dataset)
num_batches = len(dataloader)
model.eval()
test_loss,correct = 0,0
with torch.no_grad():
for X,y in dataloader:
X,y = X.to(device),y.to(device)
pred = model(X)
test_loss += loss_fn(pred,y).item()
correct += (pred.argmax(1) == y).type(torch.float).sum().item()
test_loss /= num_batches
correct /= size
print(f"Test Error :\n Accuary:{(100* correct):. 0.1f}%, Avg loss:{ test_loss :> 8f } \n")
The training process is conducted over several iterations (epochs). During each epoch, the model learns parameters to make better predictions. We print the model’s accuracy and loss at each epoch; we’d like to see the accuracy increase and the loss decrease with every epoch.
epochs = 5
for t in range(epochs):
print(f"Epoch {t+1}\n-------------------------------")
train(train_dataloader, model, loss_fn, optimizer)
test(test_dataloader, model, loss_fn)
print("Done!")
Saving Models
A common way to save a model is to serialize the internal state dictionary (containing the model parameters).
torch.save(model.state_dict()," model.pth")
print("Saved PyTorch Model State to model.pth ")
Loading Models
model= NeuralNetwork()
model.load_sate_dict(torch.load("model.pth"))
classes = [
"T-shirt/top",
"Trouser",
"Pullover",
"Dress",
"Coat",
"Sandal",
"Shirt",
"Sneaker",
"Bag",
"Ankle boot",
]
model.eval()
x,y = test_data[0][0], test_data[0][1]
with torch.no_grad():
pred = model(x)
predicted,actual = classes[pred[0].argmax(0)],classes[y]
print(f"Pedicted:"{predicted}", Actual:" {actual}" ')