2020-04-03 Seminar (4D CS/2D IFT
2020-04-04 本文已影响0人
悟空金月饺子
这次讨论班是讲了两篇新的用4维gauge fieldtheory 构造2维可积场论的工作。在文中得知了另外一种构造approach。这个新的方法是基于Gaudin model,还有与其相关的affine Kac-moody algebra都表示有关。从其出发,也能构造出我们已知的一些可积sigma model。这两种方法也是紧密联系来的。比如Gaudin model approach里面的twisted function正好是gauge field approach里面的1 form的分量。所以我们希望良种放大打通,或者融合,从而发展出一个更powerful 的方法。终极目的还是,可以把可积场论进行完整的分类。类似于Drinfeld对于yang baxter方程的工作,我们期待着分类应该需要依赖一个代数结构。在4维场论的角度里,这个分类来自于对边界条件的分析。完整的分析还没有被建立,而且从起抽象出代数结构似乎也不容易。但是这approach比较灵活直观。Gaudin model似乎是自带一个代数结构的,分类问题变成了一个表示论的问题,但是似乎这里面的图像没有前者清晰。所以打通两种方法应该会给我们很多启示。第一步可能就是要把一种方法已经构造出来的例子在尝试用另外一种方法构造出来,然后看其中的data或者说是要素是如何对应起来的。
![](https://img.haomeiwen.com/i2351999/19f77b2b77a301fd.jpg)
![](https://img.haomeiwen.com/i2351999/de8e42c829f039b3.jpg)
![](https://img.haomeiwen.com/i2351999/8c36e50f1a9e3705.jpg)
![](https://img.haomeiwen.com/i2351999/f8f2844276f8f301.jpg)
![](https://img.haomeiwen.com/i2351999/a0401db248e1bd1a.jpg)
![](https://img.haomeiwen.com/i2351999/368c2bb9c7900aea.jpg)
![](https://img.haomeiwen.com/i2351999/e8008fb59f2937fb.jpg)
![](https://img.haomeiwen.com/i2351999/3ff748c00c418d5c.jpg)
![](https://img.haomeiwen.com/i2351999/869cb32cf508cf17.jpg)
![](https://img.haomeiwen.com/i2351999/d23f771dc07fa327.jpg)
![](https://img.haomeiwen.com/i2351999/43cac85a9b7297db.jpg)
![](https://img.haomeiwen.com/i2351999/6ab9715d6af962c6.jpg)
![](https://img.haomeiwen.com/i2351999/117d417e2aa05d30.jpg)
![](https://img.haomeiwen.com/i2351999/da5245789fba899c.jpg)
![](https://img.haomeiwen.com/i2351999/ae3ca13e99abefe1.jpg)
![](https://img.haomeiwen.com/i2351999/f893e01dd4ebce85.jpg)
![](https://img.haomeiwen.com/i2351999/c924925ca689023d.jpg)
![](https://img.haomeiwen.com/i2351999/5befa34f215e618f.jpg)
![](https://img.haomeiwen.com/i2351999/c25f2dcb7f9295bb.jpg)
![](https://img.haomeiwen.com/i2351999/4574571e666939a0.jpg)
![](https://img.haomeiwen.com/i2351999/85c5049b5452a4e7.jpg)
![](https://img.haomeiwen.com/i2351999/6c34659983d71a31.jpg)
![](https://img.haomeiwen.com/i2351999/dc82b59f30d00e1b.jpg)
![](https://img.haomeiwen.com/i2351999/6f2ae61e02d3f742.jpg)
![](https://img.haomeiwen.com/i2351999/d15ef20e02d6e662.jpg)
![](https://img.haomeiwen.com/i2351999/bddc99ed32f5a6bd.jpg)
![](https://img.haomeiwen.com/i2351999/2b19945f3bca7634.jpg)
![](https://img.haomeiwen.com/i2351999/d138d2102825f74a.jpg)
![](https://img.haomeiwen.com/i2351999/805eeb78889703c4.jpg)
![](https://img.haomeiwen.com/i2351999/d6d5994b63d6799c.jpg)
![](https://img.haomeiwen.com/i2351999/ae1dc86b93f37823.jpg)
![](https://img.haomeiwen.com/i2351999/1808cbafd76ddbc6.jpg)
![](https://img.haomeiwen.com/i2351999/ebc421eb67414a9c.jpg)
![](https://img.haomeiwen.com/i2351999/ca65626748de3a26.jpg)
![](https://img.haomeiwen.com/i2351999/2a6dee80ac8f7934.jpg)
![](https://img.haomeiwen.com/i2351999/fec8654c7ec3b09e.jpg)
![](https://img.haomeiwen.com/i2351999/276f915f2aa4aec3.jpg)
![](https://img.haomeiwen.com/i2351999/0bbd4288a6630b37.jpg)
![](https://img.haomeiwen.com/i2351999/6147ba4ba4d3350f.jpg)
![](https://img.haomeiwen.com/i2351999/6590fc5bd8f38ea5.jpg)
![](https://img.haomeiwen.com/i2351999/493d62a17602b2e3.jpg)
![](https://img.haomeiwen.com/i2351999/a1f4fdddb3c7f6b7.jpg)
![](https://img.haomeiwen.com/i2351999/790214e987d387b9.jpg)
![](https://img.haomeiwen.com/i2351999/389ab207baf972cf.jpg)
![](https://img.haomeiwen.com/i2351999/a85d4476dae28356.jpg)
![](https://img.haomeiwen.com/i2351999/6d7d7429ed643dab.jpg)
![](https://img.haomeiwen.com/i2351999/2ce9d9336eb70183.jpg)
![](https://img.haomeiwen.com/i2351999/e6528da29c3ccdaf.jpg)
![](https://img.haomeiwen.com/i2351999/4bbca7d18654e229.jpg)