精确去重和Roaring BitMap (咆哮位图)
基本概念
Roaring BitMap 以下简称 RBM,中文翻译为咆哮位图,它本质上是定义了一个很大的 bit 数组,每个元素对应到 bit 数组的其中一位,一个Integer是32-bit, 一共有Integer.MAX_VALUE = 2 ^ 32个值,32-bit的unsigned integer的集合(共2 ^ 32 = 42 9496 7296个)
这个数足够覆盖一款产品的user数或item数(item 泛指是新闻,商品等)
由定义可知,其去重是针对int 型数据进行操作,对于非Integer类型的数据(比如String类型)可以通过数据字典映射成Integer,比如数据库的ID
基本位图实现存在问题
- 即使只存一个数(最大的),存储空间也是512MB
对于原始的Bitmap来说,这就需要2 ^ 32长度的bit数组
通过计算可以发现(2 ^ 32 / 8 bytes = 512MB), 一个普通的Bitmap需要耗费512MB的存储空间
不管业务值的基数有多大,这个存储空间的消耗都是恒定不变的,这显然是不能接受的。
redis 的基本的位图实现就存在这个问题
REDIS BITMAP 测试
localhost:0>flushdb
localhost:0>info
# Memory
used_memory:690288
used_memory_human:674.11K
used_memory_rss:652376
used_memory_rss_human:637.09K #表示该进程所占物理内存的大小
used_memory_peak:667584400
used_memory_peak_human:637.09K #是过去Redis内存使用的峰值
localhost:0> setbit a 4294967295 1 #将最大位置1,此时基数为1
# Memory
used_memory:541755832
used_memory_human:516.66M #set 一个值,直接占512m内存
used_memory_rss:541717944
used_memory_rss_human:516.62M
used_memory_peak:667584400
used_memory_peak_human:636.66M
附redis raoring-bitmap 实现 https://github.com/aviggiano/redis-roaring
Roaring Bitmap实现
- RBM实现源理
将32位无符号整数按照高16位分桶,即最多可能有216=65536个桶,论文内称为container。存储数据时,按照数据的高16位找到container(找不到就会新建一个),再将低16位放入container中。也就是说,一个RBM就是很多container的集合。
RoaringBitmap 构造源码
RoaringArray highLowContainer = null;
/**
* Create an empty bitmap
*/
public RoaringBitmap() {
highLowContainer = new RoaringArray();
}
RoaringArray
static final int INITIAL_CAPACITY = 4;
short[] keys = null;//高16位数组 有序数组,方便二分查找
Container[] values = null;//低16位容器数组
int size = 0;
protected RoaringArray() {
this(INITIAL_CAPACITY);
}
-
低16位容器数组存储示意图
低16位容器数组存储示意图 - 前1000个62的倍数
- 高16位为1,低16位为0到99 0x00010000-0x00010063
- 高16位为2, 低16位的所有偶数
Container 实现
Container只需要处理低16位的数据。
- ArrayContainer
public final class ArrayContainer extends Container implements Cloneable {
private static final int DEFAULT_INIT_SIZE = 4;
private static final int ARRAY_LAZY_LOWERBOUND = 1024;
static final int DEFAULT_MAX_SIZE = 4096;// containers with DEFAULT_MAX_SZE or less integers
// should be ArrayContainers
private static final long serialVersionUID = 1L;
protected int cardinality = 0;
short[] content;
/**
* Create an array container with default capacity
*/
public ArrayContainer() {
this(DEFAULT_INIT_SIZE);
}
short[] content,将16位value直接存储。
short[] content始终保持有序且不重,方便使用二分查找。
根据源码可以看出,常量DEFAULT_MAX_SIZE值为4096,当容量超过这个值的时候会将当前Container替换为BitmapContainer。
/**
* running time is in O(n) time if insert is not in order.
*/
@Override
public Container add(final short x) {
//基数为0或当前值大于容器中的最大值(因为有序,最后一个即最大值)
if (cardinality == 0 || (cardinality > 0
&& toIntUnsigned(x) > toIntUnsigned(content[cardinality - 1]))) {
//基数>=4096则转为BitmapContainer
if (cardinality >= DEFAULT_MAX_SIZE) {
return toBitmapContainer().add(x);
}
//如果容器空间不路,则扩容[见下方扩容源代码]
if (cardinality >= this.content.length) {
increaseCapacity();
}
content[cardinality++] = x;
} else {
//如果当前值在容器范围内,则找到该值对应的位置[见下二分查找源码]
int loc = Util.unsignedBinarySearch(content, 0, cardinality, x);
//未找到
if (loc < 0) {
// Transform the ArrayContainer to a BitmapContainer
// when cardinality = DEFAULT_MAX_SIZE
//虽然在容器范围内也可能会涉及到容器升级和扩容
if (cardinality >= DEFAULT_MAX_SIZE) {
return toBitmapContainer().add(x);
}
if (cardinality >= this.content.length) {
increaseCapacity();
}
// insertion : shift the elements > x by one position to
// the right
// and put x in it's appropriate place
System.arraycopy(content, -loc - 1, content, -loc, cardinality + loc + 1);
content[-loc - 1] = x;
++cardinality;
}
}
return this;
}
数组扩容逻辑
private void increaseCapacity(boolean allowIllegalSize) {
int newCapacity = (this.content.length == 0) ? DEFAULT_INIT_SIZE
: this.content.length < 64 ? this.content.length * 2
: this.content.length < 1067 ? this.content.length * 3 / 2
: this.content.length * 5 / 4;
// never allocate more than we will ever need
if (newCapacity > ArrayContainer.DEFAULT_MAX_SIZE && !allowIllegalSize) {
newCapacity = ArrayContainer.DEFAULT_MAX_SIZE;
}
// if we are within 1/16th of the max, go to max
if (newCapacity > ArrayContainer.DEFAULT_MAX_SIZE - ArrayContainer.DEFAULT_MAX_SIZE / 16
&& !allowIllegalSize) {
newCapacity = ArrayContainer.DEFAULT_MAX_SIZE;
}
this.content = Arrays.copyOf(this.content, newCapacity);
}
数组的二分查找(找到则返回value的位置,未找到则返回当前值将要insert 的位置,为与找到值的位置区分,这里返回负值)
/**
* Look for value k in array in the range [begin,end). If the value is found, return its index. If
* not, return -(i+1) where i is the index where the value would be inserted. The array is assumed
* to contain sorted values where shorts are interpreted as unsigned integers.
*
* @param array array where we search
* @param begin first index (inclusive)
* @param end last index (exclusive)
* @param k value we search for
* @return count
*/
public static int unsignedBinarySearch(final short[] array, final int begin, final int end,
final short k) {
if (USE_HYBRID_BINSEARCH) {
return hybridUnsignedBinarySearch(array, begin, end, k);
} else {
return branchyUnsignedBinarySearch(array, begin, end, k);
}
}
为什么是4096的时侯升级容器?
- bitmap存储空间恒定为8K,最大的基数可达到8*1024*8=65536个
- array的基数与存储空间成正比,即基数越大,占用空占越多
通过以上两点我们取两者交相交的点为平衡点,即小于该点array更省空间,大于该点bitmap更省空间。
上图中的前两个container基数都没超过4096,所以均为ArrayContainer。
- BitmapContainer
/**
* Simple bitset-like container.
*/
public final class BitmapContainer extends Container implements Cloneable {
protected static final int MAX_CAPACITY = 1 << 16;
//保存低16位,所以最大值为216
// the parameter is for overloading and symmetry with ArrayContainer
protected static int serializedSizeInBytes(int unusedCardinality) {
return MAX_CAPACITY / 8;
}
final long[] bitmap;
int cardinality;
// nruns value for which RunContainer.serializedSizeInBytes ==
// BitmapContainer.getArraySizeInBytes()
private final int MAXRUNS = (getArraySizeInBytes() - 2) / 4;
/**
* Create a bitmap container with all bits set to false
*构造最大的long 值数组,每个long 64位
*/
public BitmapContainer() {
this.cardinality = 0;
this.bitmap = new long[MAX_CAPACITY / 64];//1024个long
}
这种Container使用long[]存储位图数据。我们知道,每个Container处理16位整形的数据,也就是0~65535,因此根据位图的原理,需要65536个比特来存储数据,每个比特位用1来表示有,0来表示无。每个long有64位,因此需要1024个long来提供65536个bit。
因此,每个BitmapContainer在构建时就会初始化长度为1024的long[]。这就意味着,不管一个BitmapContainer中只存储了1个数据还是存储了65536个数据,占用的空间都是同样的8kb。
上图中的第三个container基数远远大于4096,所以要用BitmapContainer存储。
bit map container add方法源码分析
@Override
public Container add(final short i) {
final int x = Util.toIntUnsigned(i);
//当前值/64取整找到long数组的索引
final long previous = bitmap[x / 64];
//找到当前值所在long 的第几位,并将该位置1,1L<<x 等价于1x<<(x%64)
关于位移操作详情官方解释
https://docs.oracle.com/javase/specs/jls/se10/html/jls-15.html#jls-15.19
The operators << (left shift), >> (signed right shift), and >>> (unsigned right shift) are called the shift operators. The left-hand operand of a shift operator is the value to be shifted; the right-hand operand specifies the shift distance.
The type of the shift expression is the promoted type of the left-hand operand.
If the promoted type of the left-hand operand is
int, then only the five lowest-order bits of the right-hand operand are used as the shift distance.
(int 只有低5位有效)It is as if the right-hand operand were subjected to a bitwise logical AND operator &
(§15.22.1) with the mask value 0x1f
(0b11111
). The shift distance actually used is therefore always in the range 0
to 31
, inclusive.
If the promoted type of the left-hand operand is
long, then only the six lowest-order bits of the right-hand operand are used as the shift distance.
(long 只有低6位有效)It is as if the right-hand operand were subjected to a bitwise logical AND operator &
(§15.22.1) with the mask value 0x3f
(0b111111
). The shift distance actually used is therefore always in the range 0
to 63
, inclusive.
long newval = previous | (1L << x);
//赋新值
bitmap[x / 64] = newval;
if (USE_BRANCHLESS) {
cardinality += (previous ^ newval) >>> x;
} else if (previous != newval) {
++cardinality;
}
return this;
}
- RunContainer
该容器由RLE实现
/**
* This container takes the form of runs of consecutive values (effectively, run-length encoding).
*
* Adding and removing content from this container might make it wasteful so regular calls to
* "runOptimize" might be warranted.
*/
public final class RunContainer extends Container implements Cloneable {
private static final int DEFAULT_INIT_SIZE = 4;
private static final boolean ENABLE_GALLOPING_AND = false;
private short[] valueslength;//主要存储结构 we interleave values and lengths, so
// that if you have the values 11,12,13,14,15, you store that as 11,4 where 4 means that beyond 11
// itself, there are
// 4 contiguous values that follows.
// Other example: e.g., 1, 10, 20,0, 31,2 would be a concise representation of 1, 2, ..., 11, 20,
// 31, 32, 33
int nbrruns = 0;// how many runs, this number should fit in 16 bits.
- Run-Length Encoding(RLE)
Run-length encoding是被许多bitmap文件格式支持的数据压缩算法
RLE工作方式是减少重复字符的物理尺寸,被编码成两个字节,第一个字节表示字符数量,第二个字节表示本身字符值。
字符串包含4个不同字符
例如:
AAAAAAbbbXXXXXt
使用RLE,可以形成4个2字节包
6A3b5X1t
当手动执行runOptimize 方法时会触发优化
/**
* Use a run-length encoding where it is more space efficient
*
* @return whether a change was applied
*/
public boolean runOptimize() {
boolean answer = false;
for (int i = 0; i < this.highLowContainer.size(); i++) {
Container c = this.highLowContainer.getContainerAtIndex(i).runOptimize();
if (c instanceof RunContainer) {
answer = true;
}
this.highLowContainer.setContainerAtIndex(i, c);
}
return answer;
}
ArrayContainer 优化逻辑
@Override
public Container runOptimize() {
// TODO: consider borrowing the BitmapContainer idea of early
// abandonment
// with ArrayContainers, when the number of runs in the arrayContainer
// passes some threshold based on the cardinality.
int numRuns = numberOfRuns();
int sizeAsRunContainer = RunContainer.serializedSizeInBytes(numRuns);
//如果RunContainer 比当前的容器省空间,则升级为 RunContainer。BitMap 同理
if (getArraySizeInBytes() > sizeAsRunContainer) {
return new RunContainer(this, numRuns); // this could be maybe
// faster if initial
// container is a bitmap
} else {
return this;
}
}
numberOfRuns 计算run 的个数
@Override
int numberOfRuns() {
if (cardinality == 0) {
return 0; // should never happen
}
int numRuns = 1;
int oldv = toIntUnsigned(content[0]);
for (int i = 1; i < cardinality; i++) {
int newv = toIntUnsigned(content[i]);
if (oldv + 1 != newv) {
++numRuns;
}
oldv = newv;
}
return numRuns;
}
计算RunContainer 可能占用的容量
protected static int serializedSizeInBytes(int numberOfRuns) {
return 2 + 2 * 2 * numberOfRuns; // each run requires 2 2-byte entries.
//值和长度成对出现,分别两个字节
}
容器转换总结
- ArrayContainer:
如果插入值后容量超过4096,则自动转换为BitmapContainer。因此正常使用的情况下不会出现容量超过4096的ArrayContainer。
调用runOptimize()方法时,会比较和RunContainer的空间占用大小,选择是否转换为RunContainer。 - BitmapContainer:
如果删除某值后容量低至4096,则会自动转换为ArrayContainer。因此正常使用的情况下不会出现容量小于4096的BitmapContainer。
调用runOptimize()方法时,会比较和RunContainer的空间占用大小,选择是否转换为RunContainer。 - RunContainer:
只有在调用runOptimize()方法才会发生转换,会分别和ArrayContainer、BitmapContainer比较空间占用大小,然后选择是否转换。
参考
《Better bitmap performance with Roaring bitmaps》
《Consistently faster and smaller compressed bitmaps with Roaring》
The Java® Language Specification
https://www.jianshu.com/p/818ac4e90daf
https://blog.csdn.net/luanpeng825485697/article/details/101110798