Algorithms

散列表

2018-03-22  本文已影响0人  null12

一、定义

散列表(Hash Table,也叫哈希表),是通过把键值映射成整数来作为数组的索引,并进行访问记录的一种数据结构。

二、基本思想

实现散列表的关键是散列算法,即如何将任意类型的键值转化为数组的索引。通常,使用散列表进行查找分为两步:

  1. 利用散列函数将被查找的键转化为数组的一个索引。
  2. 访问索引以得到键对应的值。

三、散列函数

理想情况下,散列函数能将每个不同的键值转换成唯一的索引。但事实上,因为要考虑空间(内存)的使用,会出现碰撞冲突,即两个不同的键值映射到相同的索引,常见的解决碰撞冲突的方法有:拉链法线性探测法

优秀的散列函数满足如下条件:

  1. 一致性——等价的键必然产生相等的散列值
  2. 高效性——计算简便
  3. 均匀性——均匀地散列所有的键

对于大小为M的数组,理想的散列函数对任意键处理后,其值分布在0~M-1之间的概率应该相等。针对不同类型的键值,常见的散列函数有如下几种:

1、除留余数法
步骤如下:
①选择大小为M的数组(M应当为素数);
②对于任意正整数键值k,取k%M作为散列值。

为什么M必须用素数?
因为素数在数学上有很多特殊的性质,使用素数可以使散列后的值分布更均匀。例如,M=10k,N为正整数,N%M后的值为N的后k位。

四、碰撞冲突

4.1 拉链法

基本思想:
将大小为M的数组中的每个元素指向一条链表,链表的每个结点存储了散列值为该元素的索引的键值对。则N个键最终保存在M条链表中,链的平均长度为:N/M

4-1 拉链法

拉链法实现源码:

public class SeparateChainingHashST<Key, Value> {
    private static final int INIT_CAPACITY = 4;
    private int n;                                // number of key-value pairs
    private int m;                                // hash table size
    private SequentialSearchST<Key, Value>[] st;  // array of linked-list symbol tables

    /**
     * Initializes an empty symbol table.
     */
    public SeparateChainingHashST() {
        this(INIT_CAPACITY);
    } 

    /**
     * Initializes an empty symbol table with {@code m} chains.
     * @param m the initial number of chains
     */
    public SeparateChainingHashST(int m) {
        this.m = m;
        st = (SequentialSearchST<Key, Value>[]) new SequentialSearchST[m];
        for (int i = 0; i < m; i++)
            st[i] = new SequentialSearchST<Key, Value>();
    } 

    // resize the hash table to have the given number of chains,
    // rehashing all of the keys
    private void resize(int chains) {
        SeparateChainingHashST<Key, Value> temp = new SeparateChainingHashST<Key, Value>(chains);
        for (int i = 0; i < m; i++) {
            for (Key key : st[i].keys()) {
                temp.put(key, st[i].get(key));
            }
        }
        this.m  = temp.m;
        this.n  = temp.n;
        this.st = temp.st;
    }

    // hash value between 0 and m-1
    private int hash(Key key) {
        return (key.hashCode() & 0x7fffffff) % m;
    } 

    /**
     * Returns the number of key-value pairs in this symbol table.
     *
     * @return the number of key-value pairs in this symbol table
     */
    public int size() {
        return n;
    } 

    /**
     * Returns true if this symbol table is empty.
     *
     * @return {@code true} if this symbol table is empty;
     *         {@code false} otherwise
     */
    public boolean isEmpty() {
        return size() == 0;
    }

    /**
     * Returns true if this symbol table contains the specified key.
     *
     * @param  key the key
     * @return {@code true} if this symbol table contains {@code key};
     *         {@code false} otherwise
     * @throws IllegalArgumentException if {@code key} is {@code null}
     */
    public boolean contains(Key key) {
        if (key == null) throw new IllegalArgumentException("argument to contains() is null");
        return get(key) != null;
    } 

    /**
     * Returns the value associated with the specified key in this symbol table.
     *
     * @param  key the key
     * @return the value associated with {@code key} in the symbol table;
     *         {@code null} if no such value
     * @throws IllegalArgumentException if {@code key} is {@code null}
     */
    public Value get(Key key) {
        if (key == null) throw new IllegalArgumentException("argument to get() is null");
        int i = hash(key);
        return st[i].get(key);
    } 

    /**
     * Inserts the specified key-value pair into the symbol table, overwriting the old 
     * value with the new value if the symbol table already contains the specified key.
     * Deletes the specified key (and its associated value) from this symbol table
     * if the specified value is {@code null}.
     *
     * @param  key the key
     * @param  val the value
     * @throws IllegalArgumentException if {@code key} is {@code null}
     */
    public void put(Key key, Value val) {
        if (key == null) throw new IllegalArgumentException("first argument to put() is null");
        if (val == null) {
            delete(key);
            return;
        }

        // double table size if average length of list >= 10
        if (n >= 10*m) resize(2*m);

        int i = hash(key);
        if (!st[i].contains(key)) n++;
        st[i].put(key, val);
    } 

    /**
     * Removes the specified key and its associated value from this symbol table     
     * (if the key is in this symbol table).    
     *
     * @param  key the key
     * @throws IllegalArgumentException if {@code key} is {@code null}
     */
    public void delete(Key key) {
        if (key == null) throw new IllegalArgumentException("argument to delete() is null");

        int i = hash(key);
        if (st[i].contains(key)) n--;
        st[i].delete(key);

        // halve table size if average length of list <= 2
        if (m > INIT_CAPACITY && n <= 2*m) resize(m/2);
    } 

    // return keys in symbol table as an Iterable
    public Iterable<Key> keys() {
        Queue<Key> queue = new Queue<Key>();
        for (int i = 0; i < m; i++) {
            for (Key key : st[i].keys())
                queue.enqueue(key);
        }
        return queue;
    } 
}

4.2 线性探测法

基本思想:
用大小为M的数组保存N个键值对,其中M>N,即内部索引数组的大小总是大于已经插入的键值对。基于这种策略的所有方法被统称为开放地址散列表

具体步骤:

  1. 用散列函数查找键在数组中的索引;
  2. 如果其中的键和被查找的键相同,则返回键值;如果不同,则继续向后查找(索引+1,遇末尾则折回开头),直到找到该键或遇到空位置。
4-2-1 线性探测法

线性探测法实现源码:

public class LinearProbingHashST<Key, Value> {
    private static final int INIT_CAPACITY = 4;
    private int n;           // number of key-value pairs in the symbol table
    private int m;           // size of linear probing table
    private Key[] keys;      // the keys
    private Value[] vals;    // the values

    /**
     * Initializes an empty symbol table.
     */
    public LinearProbingHashST() {
        this(INIT_CAPACITY);
    }

    /**
     * Initializes an empty symbol table with the specified initial capacity.
     *
     * @param capacity the initial capacity
     */
    public LinearProbingHashST(int capacity) {
        m = capacity;
        n = 0;
        keys = (Key[])   new Object[m];
        vals = (Value[]) new Object[m];
    }

    /**
     * Returns the number of key-value pairs in this symbol table.
     *
     * @return the number of key-value pairs in this symbol table
     */
    public int size() {
        return n;
    }

    /**
     * Returns true if this symbol table is empty.
     *
     * @return {@code true} if this symbol table is empty;
     *         {@code false} otherwise
     */
    public boolean isEmpty() {
        return size() == 0;
    }

    /**
     * Returns true if this symbol table contains the specified key.
     *
     * @param  key the key
     * @return {@code true} if this symbol table contains {@code key};
     *         {@code false} otherwise
     * @throws IllegalArgumentException if {@code key} is {@code null}
     */
    public boolean contains(Key key) {
        if (key == null) throw new IllegalArgumentException("argument to contains() is null");
        return get(key) != null;
    }

    // hash function for keys - returns value between 0 and M-1
    private int hash(Key key) {
        return (key.hashCode() & 0x7fffffff) % m;
    }

    // resizes the hash table to the given capacity by re-hashing all of the keys
    private void resize(int capacity) {
        LinearProbingHashST<Key, Value> temp = new LinearProbingHashST<Key, Value>(capacity);
        for (int i = 0; i < m; i++) {
            if (keys[i] != null) {
                temp.put(keys[i], vals[i]);
            }
        }
        keys = temp.keys;
        vals = temp.vals;
        m    = temp.m;
    }

    /**
     * Inserts the specified key-value pair into the symbol table, overwriting the old 
     * value with the new value if the symbol table already contains the specified key.
     * Deletes the specified key (and its associated value) from this symbol table
     * if the specified value is {@code null}.
     *
     * @param  key the key
     * @param  val the value
     * @throws IllegalArgumentException if {@code key} is {@code null}
     */
    public void put(Key key, Value val) {
        if (key == null) throw new IllegalArgumentException("first argument to put() is null");

        if (val == null) {
            delete(key);
            return;
        }

        // double table size if 50% full
        if (n >= m/2) resize(2*m);

        int i;
        for (i = hash(key); keys[i] != null; i = (i + 1) % m) {
            if (keys[i].equals(key)) {
                vals[i] = val;
                return;
            }
        }
        keys[i] = key;
        vals[i] = val;
        n++;
    }

    /**
     * Returns the value associated with the specified key.
     * @param key the key
     * @return the value associated with {@code key};
     *         {@code null} if no such value
     * @throws IllegalArgumentException if {@code key} is {@code null}
     */
    public Value get(Key key) {
        if (key == null) throw new IllegalArgumentException("argument to get() is null");
        for (int i = hash(key); keys[i] != null; i = (i + 1) % m)
            if (keys[i].equals(key))
                return vals[i];
        return null;
    }

    /**
     * Removes the specified key and its associated value from this symbol table     
     * (if the key is in this symbol table).    
     *
     * @param  key the key
     * @throws IllegalArgumentException if {@code key} is {@code null}
     */
    public void delete(Key key) {
        if (key == null) throw new IllegalArgumentException("argument to delete() is null");
        if (!contains(key)) return;

        // find position i of key
        int i = hash(key);
        while (!key.equals(keys[i])) {
            i = (i + 1) % m;
        }

        // delete key and associated value
        keys[i] = null;
        vals[i] = null;

        // rehash all keys in same cluster
        i = (i + 1) % m;
        while (keys[i] != null) {
            // delete keys[i] an vals[i] and reinsert
            Key   keyToRehash = keys[i];
            Value valToRehash = vals[i];
            keys[i] = null;
            vals[i] = null;
            n--;
            put(keyToRehash, valToRehash);
            i = (i + 1) % m;
        }

        n--;

        // halves size of array if it's 12.5% full or less
        if (n > 0 && n <= m/8) resize(m/2);

        assert check();
    }

    /**
     * Returns all keys in this symbol table as an {@code Iterable}.
     * To iterate over all of the keys in the symbol table named {@code st},
     * use the foreach notation: {@code for (Key key : st.keys())}.
     *
     * @return all keys in this symbol table
     */
    public Iterable<Key> keys() {
        Queue<Key> queue = new Queue<Key>();
        for (int i = 0; i < m; i++)
            if (keys[i] != null) queue.enqueue(keys[i]);
        return queue;
    }

    // integrity check - don't check after each put() because
    // integrity not maintained during a delete()
    private boolean check() {

        // check that hash table is at most 50% full
        if (m < 2*n) {
            System.err.println("Hash table size m = " + m + "; array size n = " + n);
            return false;
        }

        // check that each key in table can be found by get()
        for (int i = 0; i < m; i++) {
            if (keys[i] == null) continue;
            else if (get(keys[i]) != vals[i]) {
                System.err.println("get[" + keys[i] + "] = " + get(keys[i]) + "; vals[i] = " + vals[i]);
                return false;
            }
        }
        return true;
    }
}

性能分析:
开放地址类的散列表的性能依赖于α=N/M的值,α称为散列表的使用率(0≤α<1)。
线性探测的平均成本取决于元素在插入符号表后形成的键簇的大小。所谓键簇,就是一条连续的元素组大小,键簇越小,性能越好,如下图:

根据数学分析,在一张大小为M并含有N=αM个键的基于线性探测的散列表中:
命中查找所需的探测次数为:

未命中查找所需的探测次数为:

当α约为0.5时,查找命中所需探测次数约为1.5次,查找未命中所需探测次数约为2.5次。
也就是说当散列表快满的时候,查找所需的探测次数是巨大的(α趋近于1),但当α<0.5时,查找所需的探测次数只在1.5~2.5之间。

上一篇下一篇

猜你喜欢

热点阅读