聚类算法k-means

2019-10-30  本文已影响0人  陈文瑜

聚类算法

聚类算法有特征,无标签,是无监督分类。

cluster.KMeans
cluster.k_means 参数:X,n\_clusters

KMeans算法

K 与 质心(\mu_j)

非常的慢 O(n^{(k+2)/p})

from sklearn.datasets import make_blobs
import matplotlib.pyplot as plt
# 自己创建数据集
X,y = make_blobs(n_samples=500,n_features=2,centers=4,random_state=1)
# 作图
fig,ax1 = plt.subplots(1)
ax1.scatter(X[:,0],X[:,1],marker='o',s=8)
plt.show()
作图1.png
from sklearn.cluster import KMeans
n_clusters = 4
cluster = KMeans(n_clusters=n_clusters,random_state=0).fit(X)
y_pred = cluster.labels_
# 查看预测标签
y_pred
centroid = cluster.cluster_centers_
# 查看质心未知
centroid
inertia = cluster.inertia_
# 查看 欧几里得距离
inertia
# 作图
color = ["red","pink","orange","gray"]
fig,ax1 = plt.subplots(1)
for i in range(n_clusters):
    ax1.scatter(X[y_pred==i,0],X[y_pred==i,1],marker='o',s=8,c=color[i])
ax1.scatter(centroid[:,0],centroid[:,1],marker="x",s=15,c="black")
plt.show()
图2.png

聚类算法模型评估指标

真是标签已知:互信息分,V-measure,调整蓝德系数

轮廓系数计算 s = \frac{b-a}{max(a,b)} , a红与红的距离,b红与黑的距离,b越大越好

from sklearn.metrics import silhouette_score
from sklearn.metrics import silhouette_samples

silhouette_score(X,y_pred)
# 0.6505186632729437
silhouette_samples(X,y_pred).shape
# (500,)
from sklearn.metrics import calinski_harabasz_score
calinski_harabasz_score(X,y_pred)
# 2704.4858735121097

案例 (day08_3.1.3 案例:轮廓系数找最佳n_clusters (1))

上一篇 下一篇

猜你喜欢

热点阅读