myPthonyRoad大数据 爬虫Python AI Sql生活不易 我用python

Scrapy分布式爬虫打造搜索引擎 -(二)伯乐在线爬取所有文章

2017-06-27  本文已影响3726人  天涯明月笙

Python分布式爬虫打造搜索引擎

基于Scrapy、Redis、elasticsearch和django打造一个完整的搜索引擎网站

推荐前往我的个人博客进行阅读:http://blog.mtianyan.cn/
目录分章效果更佳哦

分章查看目录:

  1. Scrapy分布式爬虫打造搜索引擎 - (一)基础知识
  2. Scrapy分布式爬虫打造搜索引擎 - (二)伯乐在线爬取所有文章
  3. Scrapy分布式爬虫打造搜索引擎 - (三)知乎网问题和答案爬取
  4. Scrapy分布式爬虫打造搜索引擎 - (四)通过CrawlSpider对拉勾网进行整站爬取
  5. Scrapy分布式爬虫打造搜索引擎-(五)爬虫与反爬虫的战争
  6. Scrapy分布式爬虫打造搜索引擎-(六)scrapy进阶开发
  7. Scrapy分布式爬虫打造搜索引擎-(七)scrapy-redis 分布式爬虫
  8. Scrapy分布式爬虫打造搜索引擎-(八)elasticsearch结合django搭建搜索引擎

二、伯乐在线爬取所有文章

1. 初始化文件目录

基础环境

  1. python 3.5.1
  2. JetBrains PyCharm 2016.3.2
  3. mysql+navicat

为了便于日后的部署:我们开发使用了虚拟环境。

pip install virtualenv
pip install virtualenvwrapper-win
安装虚拟环境管理
mkvirtualenv articlespider3
创建虚拟环境
workon articlespider3
直接进入虚拟环境
deactivate
退出激活状态
workon
知道有哪些虚拟环境

scrapy项目初始化介绍

自行官网下载py35对应得whl文件进行pip离线安装
Scrapy 1.3.3

命令行创建scrapy项目

cd desktop
scrapy startproject ArticleSpider

scrapy目录结构

scrapy借鉴了django的项目思想

  • scrapy.cfg:配置文件。
SPIDER_MODULES = ['ArticleSpider.spiders'] #存放spider的路径
NEWSPIDER_MODULE = 'ArticleSpider.spiders'

pipelines.py:

做跟数据存储相关的东西

middilewares.py:

自己定义的middlewares 定义方法,处理响应的IO操作

init.py:

项目的初始化文件。

items.py:

定义我们所要爬取的信息的相关属性。Item对象是种类似于表单,用来保存获取到的数据

创建我们的spider

cd ArticleSpider
scrapy genspider jobbole blog.jobbole.com

可以看到直接为我们创建好的空项目里已经有了模板代码。如下:

# -*- coding: utf-8 -*-
import scrapy


class JobboleSpider(scrapy.Spider):
    name = "jobbole"
    allowed_domains = ["blog.jobbole.com"]
    # start_urls是一个带爬的列表,
    #spider会为我们把请求下载网页做到,直接到parse阶段
    start_urls = ['http://blog.jobbole.com/']
    def parse(self, response):
        pass

scray在命令行启动某一个Spyder的命令:

scrapy crawl jobbole

在windows报出错误

ImportError: No module named 'win32api'

pip install pypiwin32#解决

创建我们的调试工具类*

在项目根目录里创建main.py
作为调试工具文件

# _*_ coding: utf-8 _*_
__author__ = 'mtianyan'
__date__ = '2017/3/28 12:06'

from scrapy.cmdline import execute

import sys
import os

#将系统当前目录设置为项目根目录
#os.path.abspath(__file__)为当前文件所在绝对路径
#os.path.dirname为文件所在目录
#H:\CodePath\spider\ArticleSpider\main.py
#H:\CodePath\spider\ArticleSpider
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
#执行命令,相当于在控制台cmd输入改名了
execute(["scrapy", "crawl" , "jobbole"])

settings.py的设置不遵守reboots协议

ROBOTSTXT_OBEY = False

在jobble.py打上断点:

def parse(self, response):
    pass

可以看到他返回的htmlresponse对象:
对象内部:

  • body:网页内容

可以看出scrapy已经为我们做到了将网页下载下来。而且编码也进行了转换.

2. 提取伯乐在线内容

xpath的使用

xpath让你可以不懂前端html,不看html的详细结构,只需要会右键查看就能获取网页上任何内容。速度远超beautifulsoup。
目录:

1. xpath简介
2. xpath术语与语法
3. xpath抓取误区:javasrcipt生成html与html源文件的区别
4. xpath抓取实例

为什么要使用xpath?

xpath节点关系

  1. 父节点*上一层节点*
  2. 子节点
  3. 兄弟节点*同胞节点*
  4. 先辈节点*父节点,爷爷节点*
  5. 后代节点*儿子,孙子*
    xpath语法:
表达式 说明
article 选取所有article元素的所有子节点
/article 选取根元素article
article/a 选取所有属于article的子元素的a元素
//div 选取所有div元素(不管出现在文档里的任何地方)
article//div 选取所有属于article元素的后代的div元素,不管它出现在article之下的任何位置
//@class 选取所有名为class的属性

xpath语法-谓语:

表达式 说明
/article/div[1 选取属于article子元素的第一个div元素
/article/div[last()] 选取属于article子元素的最后一个div元素
/article/div[last()-1] 选取属于article子元素的倒数第二个div元素
//div[@color] 选取所有拥有color属性的div元素
//div[@color='red'] 选取所有color属性值为red的div元素

xpath语法:

表达式 说明
/div/* 选取属于div元素的所有子节点
//* 选取所有元素
//div[@*] 选取所有带属性的div 元素
//div/a 丨//div/p 选取所有div元素的a和p元素
//span丨//ul 选取文档中的span和ul元素
article/div/p丨//span 选取所有属于article元素的div元素的p元素以及文档中所有的 span元素

xpath抓取误区

firebugs插件

取某一个网页上元素的xpath地址

如:http://blog.jobbole.com/110287/

在标题处右键使用firebugs查看元素。
然后在<h1>2016 腾讯软件开发面试题(部分)</h1>右键查看xpath

# -*- coding: utf-8 -*-
import scrapy

class JobboleSpider(scrapy.Spider):
    name = "jobbole"
    allowed_domains = ["blog.jobbole.com"]
    start_urls = ['http://blog.jobbole.com/110287/']

    def parse(self, response):
        re_selector = response.xpath("/html/body/div[3]/div[3]/div[1]/div[1]/h1")
        # print(re_selector)
        pass

调试debug可以看到

re_selector =(selectorlist)[]

可以看到返回的是一个空列表,
列表是为了如果我们当前的xpath路径下还有层级目录时可以进行选取
空说明没取到值:

我们可以来chorme里观察一下

chorme取到的值
//*[@id="post-110287"]/div[1]/h1

chormexpath代码

# -*- coding: utf-8 -*-
import scrapy


class JobboleSpider(scrapy.Spider):
    name = "jobbole"
    allowed_domains = ["blog.jobbole.com"]
    start_urls = ['http://blog.jobbole.com/110287/']

    def parse(self, response):
        re_selector = response.xpath('//*[@id="post-110287"]/div[1]/h1')
        # print(re_selector)
        pass

可以看出此时可以取到值

分析页面,可以发现页面内有一部html是通过JavaScript ajax交互来生成的,因此在f12检查元素时的页面结构里有,而xpath不对
xpath是基于html源代码文件结构来找的

xpath可以有多种多样的写法:

#re_selector(firebugs获取)re2_selector (chrome获取)
#因为上文xpath抓取误区提到原因获取值为空
re_selector = response.xpath("/html/body/div[1]/div[3]/div[1]/div[1]/h1/text()")
re2_selector = response.xpath('//*[@id="post-110287"]/div[1]/h1/text()')
re3_selector = response.xpath('//div[@class="entry-header"]/h1/text()')

推荐使用id型。因为页面id唯一。

推荐使用class型,因为后期循环爬取可扩展通用性强。

通过了解了这些此时我们已经可以抓取到页面的标题,此时可以使用xpath利器照猫画虎抓取任何内容。只需要点击右键查看xpath。

开启控制台调试

scrapy shell http://blog.jobbole.com/110287/

完整的xpath提取伯乐在线字段代码

# -*- coding: utf-8 -*-
import scrapy
import re

class JobboleSpider(scrapy.Spider):
    name = "jobbole"
    allowed_domains = ["blog.jobbole.com"]
    start_urls = ['http://blog.jobbole.com/110287/']

    def parse(self, response):
        #提取文章的具体字段
        title = response.xpath('//div[@class="entry-header"]/h1/text()').extract_first("")
        create_date = response.xpath("//p[@class='entry-meta-hide-on-mobile']/text()").extract()[0].strip().replace("·","").strip()
        praise_nums = response.xpath("//span[contains(@class, 'vote-post-up')]/h10/text()").extract()[0]
        fav_nums = response.xpath("//span[contains(@class, 'bookmark-btn')]/text()").extract()[0]
        match_re = re.match(".*?(\d+).*", fav_nums)
        if match_re:
            fav_nums = match_re.group(1)

        comment_nums = response.xpath("//a[@href='#article-comment']/span/text()").extract()[0]
        match_re = re.match(".*?(\d+).*", comment_nums)
        if match_re:
            comment_nums = match_re.group(1)

        content = response.xpath("//div[@class='entry']").extract()[0]

        tag_list = response.xpath("//p[@class='entry-meta-hide-on-mobile']/a/text()").extract()
        tag_list = [element for element in tag_list if not element.strip().endswith("评论")]
        tags = ",".join(tag_list)
        pass

css选择器的使用:

# 通过css选择器提取字段
        # front_image_url = response.meta.get("front_image_url", "")  #文章封面图
        title = response.css(".entry-header h1::text").extract_first()
        create_date = response.css("p.entry-meta-hide-on-mobile::text").extract()[0].strip().replace("·","").strip()
        praise_nums = response.css(".vote-post-up h10::text").extract()[0]
        fav_nums = response.css(".bookmark-btn::text").extract()[0]
        match_re = re.match(".*?(\d+).*", fav_nums)
        if match_re:
            fav_nums = int(match_re.group(1))
        else:
            fav_nums = 0

        comment_nums = response.css("a[href='#article-comment'] span::text").extract()[0]
        match_re = re.match(".*?(\d+).*", comment_nums)
        if match_re:
            comment_nums = int(match_re.group(1))
        else:
            comment_nums = 0

        content = response.css("div.entry").extract()[0]

        tag_list = response.css("p.entry-meta-hide-on-mobile a::text").extract()
        tag_list = [element for element in tag_list if not element.strip().endswith("评论")]
        tags = ",".join(tag_list)
        pass

3. 爬取所有文章

yield关键字

#使用request下载详情页面,下载完成后回调方法parse_detail()提取文章内容中的字段
yield Request(url=parse.urljoin(response.url,post_url),callback=self.parse_detail)

scrapy.http import Request下载网页

from scrapy.http import Request
Request(url=parse.urljoin(response.url,post_url),callback=self.parse_detail)

parse拼接网址应对herf内有可能网址不全

from urllib import parse
url=parse.urljoin(response.url,post_url)
parse.urljoin("http://blog.jobbole.com/all-posts/","http://blog.jobbole.com/111535/")
#结果为http://blog.jobbole.com/111535/

class层级关系

next_url = response.css(".next.page-numbers::attr(href)").extract_first("")
#如果.next .pagenumber 是指两个class为层级关系。而不加空格为同一个标签

twist异步机制

Scrapy使用了Twisted作为框架,Twisted有些特殊的地方是它是事件驱动的,并且比较适合异步的代码。在任何情况下,都不要写阻塞的代码。阻塞的代码包括:

实现全部文章字段下载的代码:

    def parse(self, response):
        """
                1. 获取文章列表页中的文章url并交给scrapy下载后并进行解析
                2. 获取下一页的url并交给scrapy进行下载, 下载完成后交给parse
                """
        # 解析列表页中的所有文章url并交给scrapy下载后并进行解析
        post_urls = response.css("#archive .floated-thumb .post-thumb a::attr(href)").extract()
        for post_url in post_urls:
            #request下载完成之后,回调parse_detail进行文章详情页的解析
            # Request(url=post_url,callback=self.parse_detail)
            print(response.url)
            print(post_url)
            yield Request(url=parse.urljoin(response.url,post_url),callback=self.parse_detail)
            #遇到href没有域名的解决方案
            #response.url + post_url
            print(post_url)
        # 提取下一页并交给scrapy进行下载
        next_url = response.css(".next.page-numbers::attr(href)").extract_first("")
        if next_url:
            yield Request(url=parse.urljoin(response.url, post_url), callback=self.parse)

全部文章的逻辑流程图

所有文章流程图

4. scrapy的items整合字段

数据爬取的任务就是从非结构的数据中提取出结构性的数据。
items 可以让我们自定义自己的字段(类似于字典,但比字典的功能更齐全)

在当前页,需要提取多个url

原始写法,extract之后则生成list列表,无法进行二次筛选:

post_urls = response.css("#archive .floated-thumb .post-thumb a::attr(href)").extract()

改进写法:

post_nodes = response.css("#archive .floated-thumb .post-thumb a")
        for post_node in post_nodes:
            #获取封面图的url
            image_url = post_node.css("img::attr(src)").extract_first("")
            post_url = post_node.css("::attr(href)").extract_first("")

在下载网页的时候把获取到的封面图的url传给parse_detail的response
在下载网页时将这个封面url获取到,并通过meta将他发送出去。在callback的回调函数中接收该值

yield Request(url=parse.urljoin(response.url,post_url),meta={"front_image_url":image_url},callback=self.parse_detail)

front_image_url = response.meta.get("front_image_url", "")

urljoin的好处
如果你没有域名,我就从response里取出来,如果你有域名则我对你起不了作用了

**编写我们自定义的item并在jobboled.py中填充。

class JobBoleArticleItem(scrapy.Item):
    title = scrapy.Field()
    create_date = scrapy.Field()
    url = scrapy.Field()
    url_object_id = scrapy.Field()
    front_image_url = scrapy.Field()
    front_image_path = scrapy.Field()
    praise_nums = scrapy.Field()
    comment_nums = scrapy.Field()
    fav_nums = scrapy.Field()
    content = scrapy.Field()
    tags = scrapy.Field()

import之后实例化,实例化之后填充:

1. from ArticleSpider.items import JobBoleArticleItem
2. article_item = JobBoleArticleItem()
3. article_item["title"] = title
        article_item["url"] = response.url
        article_item["create_date"] = create_date
        article_item["front_image_url"] = [front_image_url]
        article_item["praise_nums"] = praise_nums
        article_item["comment_nums"] = comment_nums
        article_item["fav_nums"] = fav_nums
        article_item["tags"] = tags
        article_item["content"] = content

yield article_item将这个item传送到pipelines中
pipelines可以接收到传送过来的item
将setting.py中的pipeline配置取消注释

# Configure item pipelines
# See http://scrapy.readthedocs.org/en/latest/topics/item-pipeline.html
ITEM_PIPELINES = {
   'ArticleSpider.pipelines.ArticlespiderPipeline': 300,
}

当我们的item被传输到pipeline我们可以将其进行存储到数据库等工作

setting设置下载图片pipeline

ITEM_PIPELINES={
'scrapy.pipelines.images.ImagesPipeline': 1,
}

H:\CodePath\pyEnvs\articlespider3\Lib\site-packages\scrapy\pipelines
里面有三个scrapy默认提供的pipeline
提供了文件,图片,媒体。

ITEM_PIPELINES是一个数据管道的登记表,每一项具体的数字代表它的优先级,数字越小,越早进入。

setting设置下载图片的地址

# IMAGES_MIN_HEIGHT = 100
# IMAGES_MIN_WIDTH = 100

设置下载图片的最小高度,宽度。

新建文件夹images在

IMAGES_URLS_FIELD = "front_image_url"
project_dir = os.path.abspath(os.path.dirname(__file__))
IMAGES_STORE = os.path.join(project_dir, 'images')

安装PIL
pip install pillow

定制自己的pipeline使其下载图片后能保存下它的本地路径
get_media_requests()接收一个迭代器对象下载图片
item_completed获取到图片的下载地址

自定义图片pipeline的调试信息

继承并重写item_completed()

from scrapy.pipelines.images import ImagesPipeline

class ArticleImagePipeline(ImagesPipeline):
    #重写该方法可从result中获取到图片的实际下载地址
    def item_completed(self, results, item, info):
        for ok, value in results:
            image_file_path = value["path"]
        item["front_image_path"] = image_file_path

        return item

setting中设置使用我们自定义的pipeline,而不是系统自带的

ITEM_PIPELINES = {
   'ArticleSpider.pipelines.ArticlespiderPipeline': 300,
   # 'scrapy.pipelines.images.ImagesPipeline': 1,
    'ArticleSpider.pipelines.ArticleImagePipeline':1,
}
保存下来的本地地址

图片url的md5处理
新建package utils

import hashlib

def get_md5(url):
    m = hashlib.md5()
    m.update(url)
    return m.hexdigest()

if __name__ == "__main__":
    print(get_md5("http://jobbole.com".encode("utf-8")))

不确定用户传入的是不是:

def get_md5(url):
    #str就是unicode了
    if isinstance(url, str):
        url = url.encode("utf-8")
    m = hashlib.md5()
    m.update(url)
    return m.hexdigest()

在jobbole.py中将url的md5保存下来

from ArticleSpider.utils.common import get_md5
article_item["url_object_id"] = get_md5(response.url)

5. 数据保存到本地文件以及mysql中

保存到本地json文件

import codecs打开文件避免一些编码问题,自定义JsonWithEncodingPipeline实现json本地保存

class JsonWithEncodingPipeline(object):
    #自定义json文件的导出
    def __init__(self):
        self.file = codecs.open('article.json', 'w', encoding="utf-8")
    def process_item(self, item, spider):
        #将item转换为dict,然后生成json对象,false避免中文出错
        lines = json.dumps(dict(item), ensure_ascii=False) + "\n"
        self.file.write(lines)
        return item
    #当spider关闭的时候
    def spider_closed(self, spider):
        self.file.close()

setting.py注册pipeline

ITEM_PIPELINES = {
   'ArticleSpider.pipelines.JsonWithEncodingPipeline': 2,
   # 'scrapy.pipelines.images.ImagesPipeline': 1,
    'ArticleSpider.pipelines.ArticleImagePipeline':1,
}

scrapy exporters JsonItemExporter导出

scrapy自带的导出:

       - 'CsvItemExporter', 
       - 'XmlItemExporter',
       - 'JsonItemExporter'

from scrapy.exporters import JsonItemExporter

class JsonExporterPipleline(object):
    #调用scrapy提供的json export导出json文件
    def __init__(self):
        self.file = open('articleexport.json', 'wb')
        self.exporter = JsonItemExporter(self.file, encoding="utf-8", ensure_ascii=False)
        self.exporter.start_exporting()

    def  close_spider(self, spider):
        self.exporter.finish_exporting()
        self.file.close()

    def process_item(self, item, spider):
        self.exporter.export_item(item)
        return item

设置setting.py注册该pipeline

'ArticleSpider.pipelines.JsonExporterPipleline ': 2

保存到数据库(mysql)

数据库设计数据表,表的内容字段是和item一致的。数据库与item的关系。类似于django中model与form的关系。
日期的转换,将字符串转换为datetime

import datetime
 try:
            create_date = datetime.datetime.strptime(create_date, "%Y/%m/%d").date()
        except Exception as e:
            create_date = datetime.datetime.now().date()

数据库表设计

jobbole数据表设计

数据库驱动安装
pip install mysqlclient

Linux报错解决方案:
ubuntu:
sudo apt-get install libmysqlclient-dev
centos:
sudo yum install python-devel mysql-devel

保存到数据库pipeline(同步)编写

import MySQLdb
class MysqlPipeline(object):
    #采用同步的机制写入mysql
    def __init__(self):
        self.conn = MySQLdb.connect('127.0.0.1', 'root', 'password', 'article_spider', charset="utf8", use_unicode=True)
        self.cursor = self.conn.cursor()

    def process_item(self, item, spider):
        insert_sql = """
            insert into jobbole_article(title, url, create_date, fav_nums)
            VALUES (%s, %s, %s, %s)
        """
        self.cursor.execute(insert_sql, (item["title"], item["url"], item["create_date"], item["fav_nums"]))
        self.conn.commit()

保存到数据库的(异步Twisted)编写
因为我们的爬取速度可能大于数据库存储的速度。异步操作。
设置可配置参数
seeting.py设置

MYSQL_HOST = "127.0.0.1"
MYSQL_DBNAME = "article_spider"
MYSQL_USER = "root"
MYSQL_PASSWORD = "123456"

代码中获取到设置的可配置参数
twisted异步:

import MySQLdb.cursors
from twisted.enterprise import adbapi

#连接池ConnectionPool
#    def __init__(self, dbapiName, *connargs, **connkw):
class MysqlTwistedPipline(object):
    def __init__(self, dbpool):
        self.dbpool = dbpool

    @classmethod
    def from_settings(cls, settings):
        dbparms = dict(
            host = settings["MYSQL_HOST"],
            db = settings["MYSQL_DBNAME"],
            user = settings["MYSQL_USER"],
            passwd = settings["MYSQL_PASSWORD"],
            charset='utf8',
            cursorclass=MySQLdb.cursors.DictCursor,
            use_unicode=True,
        )
        #**dbparms-->("MySQLdb",host=settings['MYSQL_HOST']
        dbpool = adbapi.ConnectionPool("MySQLdb", **dbparms)

        return cls(dbpool)

    def process_item(self, item, spider):
        #使用twisted将mysql插入变成异步执行
        query = self.dbpool.runInteraction(self.do_insert, item)
        query.addErrback(self.handle_error, item, spider) #处理异常

    def handle_error(self, failure, item, spider):
        #处理异步插入的异常
        print (failure)

    def do_insert(self, cursor, item):
        #执行具体的插入
        #根据不同的item 构建不同的sql语句并插入到mysql中
        insert_sql, params = item.get_insert_sql()
        cursor.execute(insert_sql, params)

可选django.items

https://github.com/scrapy-plugins/scrapy-djangoitem

可以让我们保存的item直接变成django的models.

scrapy的itemloader来维护提取代码

itemloadr提供了一个容器,让我们配置某一个字段该使用哪种规则。
add_css add_value add_xpath

from scrapy.loader import ItemLoader
# 通过item loader加载item
        front_image_url = response.meta.get("front_image_url", "")  # 文章封面图
        item_loader = ItemLoader(item=JobBoleArticleItem(), response=response)
        item_loader.add_css("title", ".entry-header h1::text")
        item_loader.add_value("url", response.url)
        item_loader.add_value("url_object_id", get_md5(response.url))
        item_loader.add_css("create_date", "p.entry-meta-hide-on-mobile::text")
        item_loader.add_value("front_image_url", [front_image_url])
        item_loader.add_css("praise_nums", ".vote-post-up h10::text")
        item_loader.add_css("comment_nums", "a[href='#article-comment'] span::text")
        item_loader.add_css("fav_nums", ".bookmark-btn::text")
        item_loader.add_css("tags", "p.entry-meta-hide-on-mobile a::text")
        item_loader.add_css("content", "div.entry")
        #调用这个方法来对规则进行解析生成item对象
        article_item = item_loader.load_item()

直接使用itemloader的问题
  1. 所有值变成了list
  2. 对于这些值做一些处理函数
    item.py中对于item process处理函数
    MapCompose可以传入函数对于该字段进行处理,而且可以传入多个
from scrapy.loader.processors import MapCompose
def add_mtianyan(value):
    return value+"-mtianyan"

 title = scrapy.Field(
        input_processor=MapCompose(lambda x:x+"mtianyan",add_mtianyan),
    )

注意:此处的自定义方法一定要写在代码前面。

    create_date = scrapy.Field(
        input_processor=MapCompose(date_convert),
        output_processor=TakeFirst()
    )

只取list中的第一个值。

自定义itemloader实现默认提取第一个

class ArticleItemLoader(ItemLoader):
    #自定义itemloader实现默认提取第一个
    default_output_processor = TakeFirst()

list保存原值

def return_value(value):
    return value

front_image_url = scrapy.Field(
        output_processor=MapCompose(return_value)
    )

下载图片pipeline增加if增强通用性

class ArticleImagePipeline(ImagesPipeline):
    #重写该方法可从result中获取到图片的实际下载地址
    def item_completed(self, results, item, info):
        if "front_image_url" in item:
            for ok, value in results:
                image_file_path = value["path"]
            item["front_image_path"] = image_file_path

        return item

自定义的item带处理函数的完整代码

class JobBoleArticleItem(scrapy.Item):
    title = scrapy.Field()
    create_date = scrapy.Field(
        input_processor=MapCompose(date_convert),
    )
    url = scrapy.Field()
    url_object_id = scrapy.Field()
    front_image_url = scrapy.Field(
        output_processor=MapCompose(return_value)
    )
    front_image_path = scrapy.Field()
    praise_nums = scrapy.Field(
        input_processor=MapCompose(get_nums)
    )
    comment_nums = scrapy.Field(
        input_processor=MapCompose(get_nums)
    )
    fav_nums = scrapy.Field(
        input_processor=MapCompose(get_nums)
    )
    #因为tag本身是list,所以要重写
    tags = scrapy.Field(
        input_processor=MapCompose(remove_comment_tags),
        output_processor=Join(",")
    )
    content = scrapy.Field()
上一篇 下一篇

猜你喜欢

热点阅读