python数据分析人工智能机器学习工具癖软件测试Python专家之路

使用pandas数据分析工具处理excel

2018-08-18  本文已影响4人  python测试开发

pandas有强大的excel数据处理和导入处理功能,本文简单介绍pandas在csv和excel等格式方面处理的应用及绘制图表等功能。

pandas处理excel依赖xlutils, OpenPyXL, XlsxWriter等库。

pandas数据读取概述

读写文本

Function Description
read_csv Load delimited data from a file, URL, or file-like object; use comma as default delimiter
read_table Load delimited data from a file, URL, or file-like object; use tab ('\t') as default delimiter
read_fwf Read data in fixed-width column format (i.e., no delimiters)
read_clipboard Version of Read_table that Reads data from the clipboard; useful for converting tables from web pages
read_excel Read tabular data from an Excel XLS or XLSX file
read_hdf Read HDF5 files written by pandas
read_html Read all tables found in the given HTML document
read_json Read data from a JSON (JavaScript Object Notation) string representation
read_msgpack Read pandas data encoded using the MessagePack binary format
read_pickle Read an arbitrary object stored in Python pickle format
read_sas Read a SAS dataset stored in one of the SAS system’s custom storage formats
read_sql Read the results of a SQL query (using SQLAlchemy) as a pandas DataFrame
read_stata Read a dataset from Stata file format
read_feather Read the Feather binary file format

参数主要涉及索引、类型推理和数据转换、日期时间处理、迭代、脏数据。

ex1.csv的内容如下:


a,b,c,d,message
1,2,3,4,hello
5,6,7,8,world
9,10,11,12,foo

读取:


In [9]: df = pd.read_csv('examples/ex1.csv')
In [10]: df
Out[10]:
a b c d message
0 1 2 3 4 hello
1 5 6 7 8 world
2 9 10 11 12 foo

还可以改用read_table读取


In [11]: pd.read_table('examples/ex1.csv', sep=',')
Out[11]:
a b c d message
0 1 2 3 4 hello
1 5 6 7 8 world
2 9 10 11 12 foo

ex2.csv的内容如下:


1,2,3,4,hello
5,6,7,8,world
9,10,11,12,foo

可以使用header=None表示没有列名,也可以用names自行指定列名,还可以使用index_col将列作为索引。


In [13]: pd.read_csv('examples/ex2.csv', header=None)
Out[13]:
0 1 2 3 4
0 1 2 3 4 hello
1 5 6 7 8 world
2 9 10 11 12 foo

In [14]: pd.read_csv('examples/ex2.csv', names=['a', 'b', 'c', 'd', 'message'])
Out[14]:
a b c d message
0 1 2 3 4 hello
1 5 6 7 8 world
2 9 10 11 12 foo
6.1

In [15]: names = ['a', 'b', 'c', 'd', 'message']
In [16]: pd.read_csv('examples/ex2.csv', names=names, index_col='message')
Out[16]:
a b c d
message
hello 1 2 3 4
world 5 6 7 8
foo 9 10 11 12

csv_mindex.csv的内容:


key1,key2,value1,value2
one,a,1,2
one,b,3,4
one,c,5,6
one,d,7,8
two,a,9,10
two,b,11,12
two,c,13,14
two,d,15,16

建立层级索引:


In [18]: parsed = pd.read_csv('examples/csv_mindex.csv',
....: index_col=['key1', 'key2'])
In [19]: parsed
Out[19]:
value1 value2
key1 key2
one a 1 2
b 3 4
c 5 6
d 7 8
two a 9 10
b 11 12
c 13 14
d 15 16

用正则表达式处理混合的分隔符:


In [20]: list(open('examples/ex3.txt'))
Out[20]:
[' A B C\n',
'aaa -0.264438 -1.026059 -0.619500\n',
'bbb 0.927272 0.302904 -0.032399\n',
'ccc -0.264273 -0.386314 -0.217601\n',
'ddd -0.871858 -0.348382 1.100491\n']

In [21]: result = pd.read_table('examples/ex3.txt', sep='\s+')
In [22]: result
Out[22]:
A B C
aaa -0.264438 -1.026059 -0.619500
bbb 0.927272 0.302904 -0.032399
ccc -0.264273 -0.386314 -0.217601
ddd -0.871858 -0.348382 1.100491

ex4.csv的内容:


# hey!
a,b,c,d,message
# just wanted to make things more difficult for you
# who reads CSV files with computers, anyway?
1,2,3,4,hello
5,6,7,8,world
9,10,11,12,foo

skiprows可以忽略行


In [24]: pd.read_csv('examples/ex4.csv', skiprows=[0, 2, 3])
Out[24]:
a b c d message
0 1 2 3 4 hello
1 5 6 7 8 world
2 9 10 11 12 foo

ex5.csv的内容:


something,a,b,c,d,message
one,1,2,3,4,NA
two,5,6,,8,world
three,9,10,11,12,foo

可以指定哪些值为缺失值,甚至可以针对行指定缺失值。


In [26]: result = pd.read_csv('examples/ex5.csv')
In [27]: result
Out[27]:
something a b c d message
0 one 1 2 3.0 4 NaN
1 two 5 6 NaN 8 world
2 three 9 10 11.0 12 foo
In [28]: pd.isnull(result)
Out[28]:
something a b c d message
0 False False False False False True
1 False False False True False False
2 False False False False False False

In [29]: result = pd.read_csv('examples/ex5.csv', na_values=['NULL'])
In [30]: result
Out[30]:
something a b c d message
0 one 1 2 3.0 4 NaN
1 two 5 6 NaN 8 world
2 three 9 10 11.0 12 foo

In [31]: sentinels = {'message': ['foo', 'NA'], 'something': ['two']}
In [32]: pd.read_csv('examples/ex5.csv', na_values=sentinels)
Out[32]:
something a b c d message
0 one 1 2 3.0 4 NaN
1 NaN 5 6 NaN 8 world
2 three 9 10 11.0 12 NaN

pandas.read_csv和pandas.read_table的常用参数如下:

Argument Description
path String indicating filesystem location, URL, or file-like object
sep or delimiter Character sequence or regular expression to use to split fields in each row
header Row number to use as column names; defaults to 0 (first row), but should be None if there is no header row。
index_col Column numbers or names to use as the row index in the result; can be a single name/number or alist of them for a hierarchical index
names List of column names for result, combine with header=None
skiprows Number of rows at beginning of file to ignore or list of row numbers (starting from 0) to skip.
na_values Sequence of values to replace with NA.
comment Character(s) to split comments off the end of lines.
parse_dates Attempt to parse data to datetime; False by default. If True, will attempt to parse all columns.Otherwise can specify a list of column numbers or name to parse. If element of list is tuple or list, willcombine multiple columns together and parse to date (e.g., if date/time split across two columns).
keep_date_col If joining columns to parse date, keep the joined columns; False by default.
converters Dict containing column number of name mapping to functions (e.g., {'foo': f} would apply the function f to all values in the 'foo' column).
dayfirst When parsing potentially ambiguous dates, treat as international format (e.g., 7/6/2012 -> June 7,2012); False by default.
date_parser Function to use to parse dates.
nrows Number of rows to read from beginning of file.
iterator Return a TextParser object for reading file piecemeal.
chunksize For iteration, size of file chunks.
skip_footer Number of lines to ignore at end of file.
verbose Print various parser output information, like the number of missing values placed in non-numericcolumns.
encoding Text encoding for Unicode (e.g., 'utf-8' for UTF-8 encoded text).
squeeze If the parsed data only contains one column, return a Series.
thousands Separator for thousands (e.g., ',' or '.').

参考资料:

更多参考:https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_csv.html

CSV

使用pandas读写csv

pandas_parsing_and_write.py


import pandas as pd

input_file = r"supplier_data.csv"
output_file = r"output_files\1output.csv"

data_frame = pd.read_csv(input_file)
print(data_frame)
data_frame.to_csv(output_file, index=False)

当然也可以用python实现:

1csv_simple_parsing_and_write.py


input_file = r"supplier_data.csv"
output_file = r"output_files\1output.csv"

with open(input_file, newline='') as filereader:
    with open(output_file, 'w', newline='') as filewriter:
        for row in filereader:
            filewriter.write(row)

2csv_reader_parsing_and_write.py


import csv

input_file = r"supplier_data.csv"
output_file = r"output_files\2output.csv"

with open(input_file, 'r', newline='') as csv_in_file:
    with open(output_file, 'w', newline='') as csv_out_file:
        filereader = csv.reader(csv_in_file, delimiter=',')
        filewriter = csv.writer(csv_out_file, delimiter=',')
        for row_list in filereader:
            filewriter.writerow(row_list)

过滤特定行

pandas_value_meets_condition.py


import pandas as pd

input_file = r"supplier_data.csv"
output_file = r"output_files\3output.csv"

data_frame = pd.read_csv(input_file)

data_frame['Cost'] = data_frame['Cost'].str.strip('$').astype(float)
data_frame_value_meets_condition = data_frame.loc[(data_frame['Supplier Name']\
.str.contains('Z')) | (data_frame['Cost'] > 600.0), :]

data_frame_value_meets_condition.to_csv(output_file, index=False)

注意pandas的strip连里面的内容都可以清除, 有点类似replace的功能。

选择日期为'1/20/14', '1/30/14'的行


import pandas as pd

input_file = r"supplier_data.csv"
output_file = r"output_files\4output.csv"

data_frame = pd.read_csv(input_file)

important_dates = ['1/20/14', '1/30/14']
data_frame_value_in_set = data_frame.loc[data_frame['Purchase Date']\
.isin(important_dates), :]

data_frame_value_in_set.to_csv(output_file, index=False)

pandas_value_matches_pattern.py


import pandas as pd

input_file = r"supplier_data.csv"
output_file = r"output_files\4output.csv"

data_frame = pd.read_csv(input_file)
data_frame_value_matches_pattern = data_frame.ix[data_frame['Invoice Number']\
.str.startswith("001-"), :]

data_frame_value_matches_pattern.to_csv(output_file, index=False)

过滤特定列

pandas_column_by_index.py


import pandas as pd
import sys

input_file = r"supplier_data.csv"
output_file = r"output_files\6output.csv"

data_frame = pd.read_csv(input_file)
data_frame_column_by_index = data_frame.iloc[:, [0, 3]]
data_frame_column_by_index.to_csv(output_file, index=False)

pandas_column_by_index.py


import pandas as pd

input_file = r"supplier_data.csv"
output_file = r"output_files\7output.csv"

data_frame = pd.read_csv(input_file)
data_frame_column_by_name = data_frame.loc[
    :, ['Invoice Number', 'Purchase Date']]
data_frame_column_by_name.to_csv(output_file, index=False)

pandas_select_contiguous_rows.py


import pandas as pd

input_file = r"supplier_data_unnecessary_header_footer.csv"
output_file = r"output_files\11output.csv"

data_frame = pd.read_csv(input_file, header=None)
data_frame = data_frame.drop([0,1,2,16,17,18])
data_frame.columns = data_frame.iloc[0]
data_frame = data_frame.reindex(data_frame.index.drop(3))
data_frame.to_csv(output_file, index=False)

添加行头

pandas_add_header_row.py


import pandas as pd

input_file = r"supplier_data_no_header_row.csv"
output_file = r"output_files\11output.csv"
header_list = ['Supplier Name', 'Invoice Number', \
'Part Number', 'Cost', 'Purchase Date']
data_frame = pd.read_csv(input_file, header=None, names=header_list)
data_frame.to_csv(output_file, index=False)

合并多个文件

pandas_concat_rows_from_multiple_files.py


import pandas as pd
import glob
import os

input_path = r"D:\code\foundations-for-analytics-with-python\csv"
output_file = r"output_files\12output.csv"

all_files = glob.glob(os.path.join(input_path,'sales_*'))
all_data_frames = []
for file in all_files:
    data_frame = pd.read_csv(file, index_col=None)
    all_data_frames.append(data_frame)
data_frame_concat = pd.concat(all_data_frames, axis=0, ignore_index=True)
data_frame_concat.to_csv(output_file, index = False)

求和和求平均值

pandas_sum_average_from_multiple_files.py


import pandas as pd
import glob
import os

input_path = r"D:\code\foundations-for-analytics-with-python\csv"
output_file = r"output_files\12output.csv"

all_files = glob.glob(os.path.join(input_path,'sales_*'))
all_data_frames = []
for input_file in all_files:
    print(input_file)
    data_frame = pd.read_csv(input_file, index_col=None)
    
    print(data_frame)
    
    sales = pd.DataFrame([float(str(value).strip('$').replace(',','')) 
      for value in data_frame.loc[:, 'Sale Amount']])
    
    total_cost = sales.sum()
    average_cost = sales.mean()

    data = {'file_name': os.path.basename(input_file),
            'total_sales': total_cost,
            'average_sales': average_cost}

    all_data_frames.append(pd.DataFrame(
        data, columns=['file_name', 'total_sales', 'average_sales']))

data_frames_concat = pd.concat(all_data_frames, axis=0, ignore_index=True)
data_frames_concat.to_csv(output_file, index = False)

XLS

使用pandas读写xls

pandas_parsing_and_write_keep_dates.py


import pandas as pd

input_file = "sales_2013.xlsx"
output_file = "pandas_output.xls"
data_frame = pd.read_excel(input_file, sheetname='january_2013')

writer = pd.ExcelWriter(output_file)
data_frame.to_excel(writer, sheet_name='jan_13_output', index=False)
writer.save()

过滤特定行

pandas_value_meets_condition.py


import pandas as pd

input_file = "sales_2013.xlsx"
output_file = "pandas_output.xls"

data_frame = pd.read_excel(input_file, 'january_2013', index_col=None)
data_frame_value_meets_condition = \
    data_frame[data_frame['Sale Amount'].astype(float) > 1400.0]

writer = pd.ExcelWriter(output_file)
data_frame_value_meets_condition.to_excel(
    writer, sheet_name='jan_13_output', index=False)
writer.save()

pandas_value_in_set.py


import string

input_file = "sales_2013.xlsx"
output_file = "pandas_output.xls"

data_frame = pd.read_excel(input_file, 'january_2013', index_col=None)

important_dates = ['01/24/2013','01/31/2013']
data_frame_value_in_set = data_frame[data_frame['Purchase Date'].isin(important_dates)]

writer = pd.ExcelWriter(output_file)
data_frame_value_in_set.to_excel(writer, sheet_name='jan_13_output', index=False)
writer.save()

startswith , endswith , match和search等。

pandas_value_matches_pattern.py


import pandas as pd

input_file = "sales_2013.xlsx"
output_file = "pandas_output.xls"

data_frame = pd.read_excel(input_file, 'january_2013', index_col=None)

data_frame_value_matches_pattern = data_frame[
    data_frame['Customer Name'].str.startswith("J")]

writer = pd.ExcelWriter(output_file)
data_frame_value_matches_pattern.to_excel(
    writer, sheet_name='jan_13_output', index=False)
writer.save()

选取特定列


import pandas as pd

input_file = "sales_2013.xlsx"
output_file = "pandas_output.xls"

data_frame = pd.read_excel(input_file, 'january_2013', index_col=None)

data_frame_column_by_index = data_frame.iloc[:, [1, 4]]

writer = pd.ExcelWriter(output_file)
data_frame_column_by_index.to_excel(
    writer, sheet_name='jan_13_output', index=False)
writer.save()

pandas_column_by_name.py


import pandas as pd

input_file = "sales_2013.xlsx"
output_file = "pandas_output.xls"

data_frame = pd.read_excel(input_file, 'january_2013', index_col=None)

data_frame_column_by_name = data_frame.loc[:, ['Customer ID', 'Purchase Date']]

writer = pd.ExcelWriter(output_file)
data_frame_column_by_name.to_excel(
    writer, sheet_name='jan_13_output', index=False)
writer.save()

操作所有sheet

pandas_value_meets_condition_all_worksheets.py


import pandas as pd

input_file = "sales_2013.xlsx"
output_file = "pandas_output.xls"

data_frame = pd.read_excel(input_file, sheetname=None, index_col=None)

row_output = []
for worksheet_name, data in data_frame.items():
    row_output.append(data[data['Sale Amount'].replace('$', '').
                           replace(',', '').astype(float) > 2000.0])
filtered_rows = pd.concat(row_output, axis=0, ignore_index=True)

writer = pd.ExcelWriter(output_file)
filtered_rows.to_excel(writer, sheet_name='sale_amount_gt2000', index=False)
writer.save()

pandas_value_meets_condition_all_worksheets.py


import pandas as pd

input_file = "sales_2013.xlsx"
output_file = "pandas_output.xls"

data_frame = pd.read_excel(input_file, sheet_name=None, index_col=None)

column_output = []
for worksheet_name, data in data_frame.items():
    column_output.append(data.loc[:, ['Customer Name', 'Sale Amount']])
selected_columns = pd.concat(column_output, axis=0, ignore_index=True)

writer = pd.ExcelWriter(output_file)
selected_columns.to_excel(
        writer, sheet_name='selected_columns_all_worksheets', index=False)
writer.save()

操作部分sheet

pandas_value_meets_condition_set_of_worksheets.py


import pandas as pd

input_file = "sales_2013.xlsx"
output_file = "pandas_output.xls"

my_sheets = [0,1]
threshold = 1900.0

data_frame = pd.read_excel(input_file, sheetname=my_sheets, index_col=None)

row_list = []
for worksheet_name, data in data_frame.items():
    row_list.append(data[data['Sale Amount'].replace('$', '').
                         replace(',', '').astype(float) > threshold])
filtered_rows = pd.concat(row_list, axis=0, ignore_index=True)

writer = pd.ExcelWriter(output_file)
filtered_rows.to_excel(writer, sheet_name='set_of_worksheets', index=False)
writer.save()

处理多个excel

pandas_concat_data_from_multiple_workbooks.py


import pandas as pd
import glob
import os

input_path = "/media/andrew/6446FA2346F9F5A0/code/foundations-for-analytics-\
with-python/excel"
output_file = "pandas_output.xls"

all_workbooks = glob.glob(os.path.join(input_path,'*.xls*'))
data_frames = []
for workbook in all_workbooks:
    all_worksheets = pd.read_excel(
            workbook, sheet_name=None, index_col=None)
    for worksheet_name, data in all_worksheets.items():
        data_frames.append(data)
all_data_concatenated = pd.concat(data_frames, axis=0, ignore_index=True)

writer = pd.ExcelWriter(output_file)
all_data_concatenated.to_excel(
        writer, sheet_name='all_data_all_workbooks', index=False)
writer.save()

pandas_sum_average_multiple_workbooks.py


import pandas as pd
import glob
import os

input_path = "/media/andrew/6446FA2346F9F5A0/code/foundations-for-analytics-\
with-python/excel"
output_file = "pandas_output.xls"

all_workbooks = glob.glob(os.path.join(input_path,'*.xls*'))
data_frames = []
for workbook in all_workbooks:
    all_worksheets = pd.read_excel(workbook, sheetname=None, index_col=None)
    workbook_total_sales = []
    workbook_number_of_sales = []
    worksheet_data_frames = []
    worksheets_data_frame = None
    workbook_data_frame = None
    for worksheet_name, data in all_worksheets.items():
        total_sales = pd.DataFrame(
            [float(str(value).strip('$').replace(',','')) for value in 
             data.ix[:, 'Sale Amount']]).sum()
        number_of_sales = len(data.loc[:, 'Sale Amount'])
        average_sales = pd.DataFrame(total_sales / number_of_sales)

        workbook_total_sales.append(total_sales)
        workbook_number_of_sales.append(number_of_sales)

        data = {'workbook': os.path.basename(workbook),
                'worksheet': worksheet_name,
                'worksheet_total': total_sales,
                'worksheet_average': average_sales}

        worksheet_data_frames.append(
            pd.DataFrame(data, 
                         columns=['workbook', 'worksheet', 'worksheet_total', 
                                  'worksheet_average']))
    worksheets_data_frame = pd.concat(
        worksheet_data_frames, axis=0, ignore_index=True)

    workbook_total = pd.DataFrame(workbook_total_sales).sum()
    workbook_total_number_of_sales = pd.DataFrame(
        workbook_number_of_sales).sum()
    workbook_average = pd.DataFrame(
        workbook_total / workbook_total_number_of_sales)

    workbook_stats = {'workbook': os.path.basename(workbook),
                      'workbook_total': workbook_total,
                      'workbook_average': workbook_average}

    workbook_stats = pd.DataFrame(workbook_stats, 
                                  columns=['workbook', 'workbook_total',
                                           'workbook_average'])
    workbook_data_frame = pd.merge(
        worksheets_data_frame, workbook_stats, on='workbook', how='left')
    data_frames.append(workbook_data_frame)

all_data_concatenated = pd.concat(data_frames, axis=0, ignore_index=True)

writer = pd.ExcelWriter(output_file)
all_data_concatenated.to_excel(
    writer, sheet_name='sums_and_averages', index=False)
writer.save()

使用excel绘制图表


import pandas as pd
import random

# Some sample data to plot.
cat_1 = ['y1', 'y2', 'y3', 'y4']
index_1 = range(0, 21, 1)
multi_iter1 = {'index': index_1}
for cat in cat_1:
    multi_iter1[cat] = [random.randint(10, 100) for x in index_1]

# Create a Pandas dataframe from the data.
index_2 = multi_iter1.pop('index')
df = pd.DataFrame(multi_iter1, index=index_2)
df = df.reindex(columns=sorted(df.columns))

# Create a Pandas Excel writer using XlsxWriter as the engine.
excel_file = 'legend.xlsx'
sheet_name = 'Sheet1'

writer = pd.ExcelWriter(excel_file, engine='xlsxwriter')
df.to_excel(writer, sheet_name=sheet_name)

# Access the XlsxWriter workbook and worksheet objects from the dataframe.
workbook = writer.book
worksheet = writer.sheets[sheet_name]

# Create a chart object.
chart = workbook.add_chart({'type': 'line'})

# Configure the series of the chart from the dataframe data.
for i in range(len(cat_1)):
    col = i + 1
    chart.add_series({
        'name':       ['Sheet1', 0, col],
        'categories': ['Sheet1', 1, 0, 21, 0],
        'values':     ['Sheet1', 1, col, 21, col],
    })

# Configure the chart axes.
chart.set_x_axis({'name': 'Index'})
chart.set_y_axis({'name': 'Value', 'major_gridlines': {'visible': False}})

# Insert the chart into the worksheet.
worksheet.insert_chart('G2', chart)

# Close the Pandas Excel writer and output the Excel file.
writer.save()
test.PNG

参考资料:http://pandas-xlsxwriter-charts.readthedocs.io/

上一篇下一篇

猜你喜欢

热点阅读