使用pandas数据分析工具处理excel
pandas有强大的excel数据处理和导入处理功能,本文简单介绍pandas在csv和excel等格式方面处理的应用及绘制图表等功能。
pandas处理excel依赖xlutils, OpenPyXL, XlsxWriter等库。
pandas数据读取概述
读写文本
Function | Description | |
---|---|---|
read_csv | Load delimited data from a file, URL, or file-like object; use comma as default delimiter | |
read_table | Load delimited data from a file, URL, or file-like object; use tab ('\t') as default delimiter | |
read_fwf | Read data in fixed-width column format (i.e., no delimiters) | |
read_clipboard Version of | Read_table that | Reads data from the clipboard; useful for converting tables from web pages |
read_excel | Read tabular data from an Excel XLS or XLSX file | |
read_hdf | Read HDF5 files written by pandas | |
read_html | Read all tables found in the given HTML document | |
read_json | Read data from a JSON (JavaScript Object Notation) string representation | |
read_msgpack | Read pandas data encoded using the MessagePack binary format | |
read_pickle | Read an arbitrary object stored in Python pickle format | |
read_sas | Read a SAS dataset stored in one of the SAS system’s custom storage formats | |
read_sql | Read the results of a SQL query (using SQLAlchemy) as a pandas DataFrame | |
read_stata | Read a dataset from Stata file format | |
read_feather | Read the Feather binary file format |
参数主要涉及索引、类型推理和数据转换、日期时间处理、迭代、脏数据。
ex1.csv的内容如下:
a,b,c,d,message
1,2,3,4,hello
5,6,7,8,world
9,10,11,12,foo
读取:
In [9]: df = pd.read_csv('examples/ex1.csv')
In [10]: df
Out[10]:
a b c d message
0 1 2 3 4 hello
1 5 6 7 8 world
2 9 10 11 12 foo
还可以改用read_table读取
In [11]: pd.read_table('examples/ex1.csv', sep=',')
Out[11]:
a b c d message
0 1 2 3 4 hello
1 5 6 7 8 world
2 9 10 11 12 foo
ex2.csv的内容如下:
1,2,3,4,hello
5,6,7,8,world
9,10,11,12,foo
可以使用header=None表示没有列名,也可以用names自行指定列名,还可以使用index_col将列作为索引。
In [13]: pd.read_csv('examples/ex2.csv', header=None)
Out[13]:
0 1 2 3 4
0 1 2 3 4 hello
1 5 6 7 8 world
2 9 10 11 12 foo
In [14]: pd.read_csv('examples/ex2.csv', names=['a', 'b', 'c', 'd', 'message'])
Out[14]:
a b c d message
0 1 2 3 4 hello
1 5 6 7 8 world
2 9 10 11 12 foo
6.1
In [15]: names = ['a', 'b', 'c', 'd', 'message']
In [16]: pd.read_csv('examples/ex2.csv', names=names, index_col='message')
Out[16]:
a b c d
message
hello 1 2 3 4
world 5 6 7 8
foo 9 10 11 12
csv_mindex.csv的内容:
key1,key2,value1,value2
one,a,1,2
one,b,3,4
one,c,5,6
one,d,7,8
two,a,9,10
two,b,11,12
two,c,13,14
two,d,15,16
建立层级索引:
In [18]: parsed = pd.read_csv('examples/csv_mindex.csv',
....: index_col=['key1', 'key2'])
In [19]: parsed
Out[19]:
value1 value2
key1 key2
one a 1 2
b 3 4
c 5 6
d 7 8
two a 9 10
b 11 12
c 13 14
d 15 16
用正则表达式处理混合的分隔符:
In [20]: list(open('examples/ex3.txt'))
Out[20]:
[' A B C\n',
'aaa -0.264438 -1.026059 -0.619500\n',
'bbb 0.927272 0.302904 -0.032399\n',
'ccc -0.264273 -0.386314 -0.217601\n',
'ddd -0.871858 -0.348382 1.100491\n']
In [21]: result = pd.read_table('examples/ex3.txt', sep='\s+')
In [22]: result
Out[22]:
A B C
aaa -0.264438 -1.026059 -0.619500
bbb 0.927272 0.302904 -0.032399
ccc -0.264273 -0.386314 -0.217601
ddd -0.871858 -0.348382 1.100491
ex4.csv的内容:
# hey!
a,b,c,d,message
# just wanted to make things more difficult for you
# who reads CSV files with computers, anyway?
1,2,3,4,hello
5,6,7,8,world
9,10,11,12,foo
skiprows可以忽略行
In [24]: pd.read_csv('examples/ex4.csv', skiprows=[0, 2, 3])
Out[24]:
a b c d message
0 1 2 3 4 hello
1 5 6 7 8 world
2 9 10 11 12 foo
ex5.csv的内容:
something,a,b,c,d,message
one,1,2,3,4,NA
two,5,6,,8,world
three,9,10,11,12,foo
可以指定哪些值为缺失值,甚至可以针对行指定缺失值。
In [26]: result = pd.read_csv('examples/ex5.csv')
In [27]: result
Out[27]:
something a b c d message
0 one 1 2 3.0 4 NaN
1 two 5 6 NaN 8 world
2 three 9 10 11.0 12 foo
In [28]: pd.isnull(result)
Out[28]:
something a b c d message
0 False False False False False True
1 False False False True False False
2 False False False False False False
In [29]: result = pd.read_csv('examples/ex5.csv', na_values=['NULL'])
In [30]: result
Out[30]:
something a b c d message
0 one 1 2 3.0 4 NaN
1 two 5 6 NaN 8 world
2 three 9 10 11.0 12 foo
In [31]: sentinels = {'message': ['foo', 'NA'], 'something': ['two']}
In [32]: pd.read_csv('examples/ex5.csv', na_values=sentinels)
Out[32]:
something a b c d message
0 one 1 2 3.0 4 NaN
1 NaN 5 6 NaN 8 world
2 three 9 10 11.0 12 NaN
pandas.read_csv和pandas.read_table的常用参数如下:
Argument | Description |
---|---|
path | String indicating filesystem location, URL, or file-like object |
sep or delimiter | Character sequence or regular expression to use to split fields in each row |
header | Row number to use as column names; defaults to 0 (first row), but should be None if there is no header row。 |
index_col | Column numbers or names to use as the row index in the result; can be a single name/number or alist of them for a hierarchical index |
names | List of column names for result, combine with header=None |
skiprows | Number of rows at beginning of file to ignore or list of row numbers (starting from 0) to skip. |
na_values | Sequence of values to replace with NA. |
comment | Character(s) to split comments off the end of lines. |
parse_dates | Attempt to parse data to datetime; False by default. If True, will attempt to parse all columns.Otherwise can specify a list of column numbers or name to parse. If element of list is tuple or list, willcombine multiple columns together and parse to date (e.g., if date/time split across two columns). |
keep_date_col | If joining columns to parse date, keep the joined columns; False by default. |
converters | Dict containing column number of name mapping to functions (e.g., {'foo': f} would apply the function f to all values in the 'foo' column). |
dayfirst | When parsing potentially ambiguous dates, treat as international format (e.g., 7/6/2012 -> June 7,2012); False by default. |
date_parser | Function to use to parse dates. |
nrows | Number of rows to read from beginning of file. |
iterator | Return a TextParser object for reading file piecemeal. |
chunksize | For iteration, size of file chunks. |
skip_footer | Number of lines to ignore at end of file. |
verbose | Print various parser output information, like the number of missing values placed in non-numericcolumns. |
encoding | Text encoding for Unicode (e.g., 'utf-8' for UTF-8 encoded text). |
squeeze | If the parsed data only contains one column, return a Series. |
thousands | Separator for thousands (e.g., ',' or '.'). |
参考资料:
- https://www.dataquest.io/blog/excel-and-pandas/
- Using Pandas to Read Large Excel Files in Python 中文
- Foundations for Analytics with Python From Non-Programmer to Hacker - 2016.pdf
- Python for Data Analysis, 2nd Edition - 2017.pdf 数据分析书籍下载
- 本文最新版本
- 本文涉及的python测试开发库 谢谢点赞!
- 本文相关海量书籍下载
更多参考:https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_csv.html
CSV
使用pandas读写csv
pandas_parsing_and_write.py
import pandas as pd
input_file = r"supplier_data.csv"
output_file = r"output_files\1output.csv"
data_frame = pd.read_csv(input_file)
print(data_frame)
data_frame.to_csv(output_file, index=False)
当然也可以用python实现:
1csv_simple_parsing_and_write.py
input_file = r"supplier_data.csv"
output_file = r"output_files\1output.csv"
with open(input_file, newline='') as filereader:
with open(output_file, 'w', newline='') as filewriter:
for row in filereader:
filewriter.write(row)
2csv_reader_parsing_and_write.py
import csv
input_file = r"supplier_data.csv"
output_file = r"output_files\2output.csv"
with open(input_file, 'r', newline='') as csv_in_file:
with open(output_file, 'w', newline='') as csv_out_file:
filereader = csv.reader(csv_in_file, delimiter=',')
filewriter = csv.writer(csv_out_file, delimiter=',')
for row_list in filereader:
filewriter.writerow(row_list)
过滤特定行
- 选择供应商名字包含Z或者Cost大于600的行
pandas_value_meets_condition.py
import pandas as pd
input_file = r"supplier_data.csv"
output_file = r"output_files\3output.csv"
data_frame = pd.read_csv(input_file)
data_frame['Cost'] = data_frame['Cost'].str.strip('$').astype(float)
data_frame_value_meets_condition = data_frame.loc[(data_frame['Supplier Name']\
.str.contains('Z')) | (data_frame['Cost'] > 600.0), :]
data_frame_value_meets_condition.to_csv(output_file, index=False)
注意pandas的strip连里面的内容都可以清除, 有点类似replace的功能。
- 选择符合一个集合的数据:
选择日期为'1/20/14', '1/30/14'的行
import pandas as pd
input_file = r"supplier_data.csv"
output_file = r"output_files\4output.csv"
data_frame = pd.read_csv(input_file)
important_dates = ['1/20/14', '1/30/14']
data_frame_value_in_set = data_frame.loc[data_frame['Purchase Date']\
.isin(important_dates), :]
data_frame_value_in_set.to_csv(output_file, index=False)
- 用正则表达式选择数据
pandas_value_matches_pattern.py
import pandas as pd
input_file = r"supplier_data.csv"
output_file = r"output_files\4output.csv"
data_frame = pd.read_csv(input_file)
data_frame_value_matches_pattern = data_frame.ix[data_frame['Invoice Number']\
.str.startswith("001-"), :]
data_frame_value_matches_pattern.to_csv(output_file, index=False)
过滤特定列
- 选择0,3列
pandas_column_by_index.py
import pandas as pd
import sys
input_file = r"supplier_data.csv"
output_file = r"output_files\6output.csv"
data_frame = pd.read_csv(input_file)
data_frame_column_by_index = data_frame.iloc[:, [0, 3]]
data_frame_column_by_index.to_csv(output_file, index=False)
pandas_column_by_index.py
import pandas as pd
input_file = r"supplier_data.csv"
output_file = r"output_files\7output.csv"
data_frame = pd.read_csv(input_file)
data_frame_column_by_name = data_frame.loc[
:, ['Invoice Number', 'Purchase Date']]
data_frame_column_by_name.to_csv(output_file, index=False)
pandas_select_contiguous_rows.py
import pandas as pd
input_file = r"supplier_data_unnecessary_header_footer.csv"
output_file = r"output_files\11output.csv"
data_frame = pd.read_csv(input_file, header=None)
data_frame = data_frame.drop([0,1,2,16,17,18])
data_frame.columns = data_frame.iloc[0]
data_frame = data_frame.reindex(data_frame.index.drop(3))
data_frame.to_csv(output_file, index=False)
添加行头
pandas_add_header_row.py
import pandas as pd
input_file = r"supplier_data_no_header_row.csv"
output_file = r"output_files\11output.csv"
header_list = ['Supplier Name', 'Invoice Number', \
'Part Number', 'Cost', 'Purchase Date']
data_frame = pd.read_csv(input_file, header=None, names=header_list)
data_frame.to_csv(output_file, index=False)
合并多个文件
pandas_concat_rows_from_multiple_files.py
import pandas as pd
import glob
import os
input_path = r"D:\code\foundations-for-analytics-with-python\csv"
output_file = r"output_files\12output.csv"
all_files = glob.glob(os.path.join(input_path,'sales_*'))
all_data_frames = []
for file in all_files:
data_frame = pd.read_csv(file, index_col=None)
all_data_frames.append(data_frame)
data_frame_concat = pd.concat(all_data_frames, axis=0, ignore_index=True)
data_frame_concat.to_csv(output_file, index = False)
求和和求平均值
pandas_sum_average_from_multiple_files.py
import pandas as pd
import glob
import os
input_path = r"D:\code\foundations-for-analytics-with-python\csv"
output_file = r"output_files\12output.csv"
all_files = glob.glob(os.path.join(input_path,'sales_*'))
all_data_frames = []
for input_file in all_files:
print(input_file)
data_frame = pd.read_csv(input_file, index_col=None)
print(data_frame)
sales = pd.DataFrame([float(str(value).strip('$').replace(',',''))
for value in data_frame.loc[:, 'Sale Amount']])
total_cost = sales.sum()
average_cost = sales.mean()
data = {'file_name': os.path.basename(input_file),
'total_sales': total_cost,
'average_sales': average_cost}
all_data_frames.append(pd.DataFrame(
data, columns=['file_name', 'total_sales', 'average_sales']))
data_frames_concat = pd.concat(all_data_frames, axis=0, ignore_index=True)
data_frames_concat.to_csv(output_file, index = False)
XLS
使用pandas读写xls
pandas_parsing_and_write_keep_dates.py
import pandas as pd
input_file = "sales_2013.xlsx"
output_file = "pandas_output.xls"
data_frame = pd.read_excel(input_file, sheetname='january_2013')
writer = pd.ExcelWriter(output_file)
data_frame.to_excel(writer, sheet_name='jan_13_output', index=False)
writer.save()
过滤特定行
- 销售额大于1400的记录
pandas_value_meets_condition.py
import pandas as pd
input_file = "sales_2013.xlsx"
output_file = "pandas_output.xls"
data_frame = pd.read_excel(input_file, 'january_2013', index_col=None)
data_frame_value_meets_condition = \
data_frame[data_frame['Sale Amount'].astype(float) > 1400.0]
writer = pd.ExcelWriter(output_file)
data_frame_value_meets_condition.to_excel(
writer, sheet_name='jan_13_output', index=False)
writer.save()
- 指定日期的
pandas_value_in_set.py
import string
input_file = "sales_2013.xlsx"
output_file = "pandas_output.xls"
data_frame = pd.read_excel(input_file, 'january_2013', index_col=None)
important_dates = ['01/24/2013','01/31/2013']
data_frame_value_in_set = data_frame[data_frame['Purchase Date'].isin(important_dates)]
writer = pd.ExcelWriter(output_file)
data_frame_value_in_set.to_excel(writer, sheet_name='jan_13_output', index=False)
writer.save()
- 其他条件
startswith , endswith , match和search等。
pandas_value_matches_pattern.py
import pandas as pd
input_file = "sales_2013.xlsx"
output_file = "pandas_output.xls"
data_frame = pd.read_excel(input_file, 'january_2013', index_col=None)
data_frame_value_matches_pattern = data_frame[
data_frame['Customer Name'].str.startswith("J")]
writer = pd.ExcelWriter(output_file)
data_frame_value_matches_pattern.to_excel(
writer, sheet_name='jan_13_output', index=False)
writer.save()
选取特定列
- iloc基于index选取第2和第5列
import pandas as pd
input_file = "sales_2013.xlsx"
output_file = "pandas_output.xls"
data_frame = pd.read_excel(input_file, 'january_2013', index_col=None)
data_frame_column_by_index = data_frame.iloc[:, [1, 4]]
writer = pd.ExcelWriter(output_file)
data_frame_column_by_index.to_excel(
writer, sheet_name='jan_13_output', index=False)
writer.save()
- loc基于列名选取第2和第5列
pandas_column_by_name.py
import pandas as pd
input_file = "sales_2013.xlsx"
output_file = "pandas_output.xls"
data_frame = pd.read_excel(input_file, 'january_2013', index_col=None)
data_frame_column_by_name = data_frame.loc[:, ['Customer ID', 'Purchase Date']]
writer = pd.ExcelWriter(output_file)
data_frame_column_by_name.to_excel(
writer, sheet_name='jan_13_output', index=False)
writer.save()
操作所有sheet
- 选取销售额大于2000的行
pandas_value_meets_condition_all_worksheets.py
import pandas as pd
input_file = "sales_2013.xlsx"
output_file = "pandas_output.xls"
data_frame = pd.read_excel(input_file, sheetname=None, index_col=None)
row_output = []
for worksheet_name, data in data_frame.items():
row_output.append(data[data['Sale Amount'].replace('$', '').
replace(',', '').astype(float) > 2000.0])
filtered_rows = pd.concat(row_output, axis=0, ignore_index=True)
writer = pd.ExcelWriter(output_file)
filtered_rows.to_excel(writer, sheet_name='sale_amount_gt2000', index=False)
writer.save()
- loc基于列名选取所有sheet的第2和第5列
pandas_value_meets_condition_all_worksheets.py
import pandas as pd
input_file = "sales_2013.xlsx"
output_file = "pandas_output.xls"
data_frame = pd.read_excel(input_file, sheet_name=None, index_col=None)
column_output = []
for worksheet_name, data in data_frame.items():
column_output.append(data.loc[:, ['Customer Name', 'Sale Amount']])
selected_columns = pd.concat(column_output, axis=0, ignore_index=True)
writer = pd.ExcelWriter(output_file)
selected_columns.to_excel(
writer, sheet_name='selected_columns_all_worksheets', index=False)
writer.save()
操作部分sheet
- 选取销售额大于2000的行
pandas_value_meets_condition_set_of_worksheets.py
import pandas as pd
input_file = "sales_2013.xlsx"
output_file = "pandas_output.xls"
my_sheets = [0,1]
threshold = 1900.0
data_frame = pd.read_excel(input_file, sheetname=my_sheets, index_col=None)
row_list = []
for worksheet_name, data in data_frame.items():
row_list.append(data[data['Sale Amount'].replace('$', '').
replace(',', '').astype(float) > threshold])
filtered_rows = pd.concat(row_list, axis=0, ignore_index=True)
writer = pd.ExcelWriter(output_file)
filtered_rows.to_excel(writer, sheet_name='set_of_worksheets', index=False)
writer.save()
处理多个excel
- 连接concat
pandas_concat_data_from_multiple_workbooks.py
import pandas as pd
import glob
import os
input_path = "/media/andrew/6446FA2346F9F5A0/code/foundations-for-analytics-\
with-python/excel"
output_file = "pandas_output.xls"
all_workbooks = glob.glob(os.path.join(input_path,'*.xls*'))
data_frames = []
for workbook in all_workbooks:
all_worksheets = pd.read_excel(
workbook, sheet_name=None, index_col=None)
for worksheet_name, data in all_worksheets.items():
data_frames.append(data)
all_data_concatenated = pd.concat(data_frames, axis=0, ignore_index=True)
writer = pd.ExcelWriter(output_file)
all_data_concatenated.to_excel(
writer, sheet_name='all_data_all_workbooks', index=False)
writer.save()
- 求和
pandas_sum_average_multiple_workbooks.py
import pandas as pd
import glob
import os
input_path = "/media/andrew/6446FA2346F9F5A0/code/foundations-for-analytics-\
with-python/excel"
output_file = "pandas_output.xls"
all_workbooks = glob.glob(os.path.join(input_path,'*.xls*'))
data_frames = []
for workbook in all_workbooks:
all_worksheets = pd.read_excel(workbook, sheetname=None, index_col=None)
workbook_total_sales = []
workbook_number_of_sales = []
worksheet_data_frames = []
worksheets_data_frame = None
workbook_data_frame = None
for worksheet_name, data in all_worksheets.items():
total_sales = pd.DataFrame(
[float(str(value).strip('$').replace(',','')) for value in
data.ix[:, 'Sale Amount']]).sum()
number_of_sales = len(data.loc[:, 'Sale Amount'])
average_sales = pd.DataFrame(total_sales / number_of_sales)
workbook_total_sales.append(total_sales)
workbook_number_of_sales.append(number_of_sales)
data = {'workbook': os.path.basename(workbook),
'worksheet': worksheet_name,
'worksheet_total': total_sales,
'worksheet_average': average_sales}
worksheet_data_frames.append(
pd.DataFrame(data,
columns=['workbook', 'worksheet', 'worksheet_total',
'worksheet_average']))
worksheets_data_frame = pd.concat(
worksheet_data_frames, axis=0, ignore_index=True)
workbook_total = pd.DataFrame(workbook_total_sales).sum()
workbook_total_number_of_sales = pd.DataFrame(
workbook_number_of_sales).sum()
workbook_average = pd.DataFrame(
workbook_total / workbook_total_number_of_sales)
workbook_stats = {'workbook': os.path.basename(workbook),
'workbook_total': workbook_total,
'workbook_average': workbook_average}
workbook_stats = pd.DataFrame(workbook_stats,
columns=['workbook', 'workbook_total',
'workbook_average'])
workbook_data_frame = pd.merge(
worksheets_data_frame, workbook_stats, on='workbook', how='left')
data_frames.append(workbook_data_frame)
all_data_concatenated = pd.concat(data_frames, axis=0, ignore_index=True)
writer = pd.ExcelWriter(output_file)
all_data_concatenated.to_excel(
writer, sheet_name='sums_and_averages', index=False)
writer.save()
使用excel绘制图表
import pandas as pd
import random
# Some sample data to plot.
cat_1 = ['y1', 'y2', 'y3', 'y4']
index_1 = range(0, 21, 1)
multi_iter1 = {'index': index_1}
for cat in cat_1:
multi_iter1[cat] = [random.randint(10, 100) for x in index_1]
# Create a Pandas dataframe from the data.
index_2 = multi_iter1.pop('index')
df = pd.DataFrame(multi_iter1, index=index_2)
df = df.reindex(columns=sorted(df.columns))
# Create a Pandas Excel writer using XlsxWriter as the engine.
excel_file = 'legend.xlsx'
sheet_name = 'Sheet1'
writer = pd.ExcelWriter(excel_file, engine='xlsxwriter')
df.to_excel(writer, sheet_name=sheet_name)
# Access the XlsxWriter workbook and worksheet objects from the dataframe.
workbook = writer.book
worksheet = writer.sheets[sheet_name]
# Create a chart object.
chart = workbook.add_chart({'type': 'line'})
# Configure the series of the chart from the dataframe data.
for i in range(len(cat_1)):
col = i + 1
chart.add_series({
'name': ['Sheet1', 0, col],
'categories': ['Sheet1', 1, 0, 21, 0],
'values': ['Sheet1', 1, col, 21, col],
})
# Configure the chart axes.
chart.set_x_axis({'name': 'Index'})
chart.set_y_axis({'name': 'Value', 'major_gridlines': {'visible': False}})
# Insert the chart into the worksheet.
worksheet.insert_chart('G2', chart)
# Close the Pandas Excel writer and output the Excel file.
writer.save()
test.PNG