fdasfdsa

2022-10-18  本文已影响0人  小刺猬圆鼓鼓

```

[ModuleList(

  (0): None

  (1): Sequential(

    (0): Conv2d(96, 48, kernel_size=(1, 1), stride=(1, 1), bias=False)

    (1): BatchNorm2d(48, eps=1e-05, momentum=0.01, affine=True, track_running_stats=True)

  )

  (2): Sequential(

    (0): Conv2d(192, 48, kernel_size=(1, 1), stride=(1, 1), bias=False)

    (1): BatchNorm2d(48, eps=1e-05, momentum=0.01, affine=True, track_running_stats=True)

  )

  (3): Sequential(

    (0): Conv2d(384, 48, kernel_size=(1, 1), stride=(1, 1), bias=False)

    (1): BatchNorm2d(48, eps=1e-05, momentum=0.01, affine=True, track_running_stats=True)

  )

), ModuleList(

  (0): Sequential(

    (0): Sequential(

      (0): Conv2d(48, 96, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)

      (1): BatchNorm2d(96, eps=1e-05, momentum=0.01, affine=True, track_running_stats=True)

    )

  )

  (1): None

  (2): Sequential(

    (0): Conv2d(192, 96, kernel_size=(1, 1), stride=(1, 1), bias=False)

    (1): BatchNorm2d(96, eps=1e-05, momentum=0.01, affine=True, track_running_stats=True)

  )

  (3): Sequential(

    (0): Conv2d(384, 96, kernel_size=(1, 1), stride=(1, 1), bias=False)

    (1): BatchNorm2d(96, eps=1e-05, momentum=0.01, affine=True, track_running_stats=True)

  )

), ModuleList(

  (0): Sequential(

    (0): Sequential(

      (0): Conv2d(48, 48, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)

      (1): BatchNorm2d(48, eps=1e-05, momentum=0.01, affine=True, track_running_stats=True)

      (2): ReLU(inplace=True)

    )

    (1): Sequential(

      (0): Conv2d(48, 192, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)

      (1): BatchNorm2d(192, eps=1e-05, momentum=0.01, affine=True, track_running_stats=True)

    )

  )

  (1): Sequential(

    (0): Sequential(

      (0): Conv2d(96, 192, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)

      (1): BatchNorm2d(192, eps=1e-05, momentum=0.01, affine=True, track_running_stats=True)

    )

  )

  (2): None

  (3): Sequential(

    (0): Conv2d(384, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)

    (1): BatchNorm2d(192, eps=1e-05, momentum=0.01, affine=True, track_running_stats=True)

  )

), ModuleList(

  (0): Sequential(

    (0): Sequential(

      (0): Conv2d(48, 48, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)

      (1): BatchNorm2d(48, eps=1e-05, momentum=0.01, affine=True, track_running_stats=True)

      (2): ReLU(inplace=True)

    )

    (1): Sequential(

      (0): Conv2d(48, 48, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)

      (1): BatchNorm2d(48, eps=1e-05, momentum=0.01, affine=True, track_running_stats=True)

      (2): ReLU(inplace=True)

    )

    (2): Sequential(

      (0): Conv2d(48, 384, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)

      (1): BatchNorm2d(384, eps=1e-05, momentum=0.01, affine=True, track_running_stats=True)

    )

  )

  (1): Sequential(

    (0): Sequential(

      (0): Conv2d(96, 96, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)

      (1): BatchNorm2d(96, eps=1e-05, momentum=0.01, affine=True, track_running_stats=True)

      (2): ReLU(inplace=True)

    )

    (1): Sequential(

      (0): Conv2d(96, 384, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)

      (1): BatchNorm2d(384, eps=1e-05, momentum=0.01, affine=True, track_running_stats=True)

    )

  )

  (2): Sequential(

    (0): Sequential(

      (0): Conv2d(192, 384, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)

      (1): BatchNorm2d(384, eps=1e-05, momentum=0.01, affine=True, track_running_stats=True)

    )

  )

  (3): None

)]

```

上一篇 下一篇

猜你喜欢

热点阅读