利用图像叠加原理消除高斯噪声

2017-03-05  本文已影响2816人  FreeHale

ImageNoise使用说明

本代码是利用图片叠加的原理消除噪声的实验代码
Github
原理

原理说明

图像的加法可用于平均以减少和去除图像采集中混入的噪声,在采集中实际图像的时候,由于各种不同的原因,常会有一些干扰或噪声混入到最后采集的图像中。从这个意义上来说,实际采集到的图像g_i (x,y可看做是由原始场景图像f(x,y)和噪声图像叠加而成的,即

g(x,y)=f(x,y)+ε(x,y)

图像的加法可用于平均以减少和去除图像采集中混入的噪声,在采集中实际图像的时候,由于各种不同的原因,常会有一些干扰或噪声混入到最后采集的图像中。从这个意义上来说,实际采集到的图像g_i (x,y可看做是由原始场景图像f(x,y)和噪声图像叠加而成的,即

g(x,y)=f(x,y)+ε(x,y)

那么可以证明新的图像的期望值为

E{¯g(x,y)}=f(x,y)

如果考虑新图像和噪声图像各自的均方差的关系,则
σ(¯g(x,y))=√(1/M)×σ(e(x,y))

可见随着平均图像数量M的增加,噪声在每个像素的位置(x,y)的影响越来越小

高斯噪声原理

#include <cstdlib>
#include <cmath>
#include <limits>
double generateGaussianNoise(double mu, double sigma)
{
    const double epsilon = std::numeric_limits<double>::min();
    const double two_pi = 2.0*3.14159265358979323846;

    static double z0, z1;
    static bool generate;
    generate = !generate;

    if (!generate)
       return z1 * sigma + mu;

    double u1, u2;
    do
     {
       u1 = rand() * (1.0 / RAND_MAX);
       u2 = rand() * (1.0 / RAND_MAX);
     }
    while ( u1 <= epsilon );

    z0 = sqrt(-2.0 * log(u1)) * cos(two_pi * u2);
    z1 = sqrt(-2.0 * log(u1)) * sin(two_pi * u2);
    return z0 * sigma + mu;
}

使用说明

  1. 下载源码

  2. 命令行切换到打开build目录

  3. 输入

    ImageNoise.exe image.jpg 40

(第二个参数为图片名称,第三个参数为加噪图片数量)

  1. 目录下会生成一个output40.jpg的文件即为输出文件


    结果展示

原始图片


原始

加噪图片


加噪

结果图片


结果
上一篇下一篇

猜你喜欢

热点阅读