用Python实现机器学习算法—感知器算法

2020-10-06  本文已影响0人  公子曼步

感知器是一种简单的监督式的机器学习算法,也是最早的神经网络体系结构之一。它由 Rosenblatt 在 20 世纪 50 年代末提出。感知器是一种二元的线性分类器,其使用 d- 维超平面来将一组训练样本( d- 维输入向量)映射成二进制输出值。它的原理如下:

免费视频教程:www.mlxs.top

感知器的训练可以使用梯度下降法,训练算法有不同的步骤。首先(在步骤0中),模型的参数将被初始化。在达到指定训练次数或参数收敛前,重复以下其他步骤。

第 0 步:用 0 (或小的随机值)来初始化权重向量和偏置值

免费视频教程:www.mlxs.top

其中,

表示学习率。

第 4 步:更新权重向量和偏置量。

免费视频教程:www.mlxs.top  

In [1]:

import numpy as np

import matplotlib.pyplot as plt

from sklearn.datasets import make_blobs

from sklearn.model_selection import train_test_split

np.random.seed(123)

% matplotlib inline

数据集

In [2]:

X, y = make_blobs(n_samples=1000, centers=2)

fig = plt.figure(figsize=(8,6))

plt.scatter(X[:,0], X[:,1], c=y)

plt.title("Dataset")

plt.xlabel("First feature")

plt.ylabel("Second feature")

plt.show()

免费视频教程:www.mlxs.top

In [3]:

y_true = y[:, np.newaxis]

X_train, X_test, y_train, y_test = train_test_split(X, y_true)

print(f'Shape X_train: {X_train.shape}')

print(f'Shape y_train: {y_train.shape})')

print(f'Shape X_test: {X_test.shape}')

print(f'Shape y_test: {y_test.shape}')

Shape X_train: (750, 2)

Shape y_train: (750, 1))

Shape X_test: (250, 2)

Shape y_test: (250, 1)

感知器分类

In [6]:

class Perceptron():

    def __init__(self):

        pass

    def train(self, X, y, learning_rate=0.05, n_iters=100):

        n_samples, n_features = X.shape

        # Step 0: Initialize the parameters

        self.weights = np.zeros((n_features,1))

        self.bias = 0

        for i in range(n_iters):

            # Step 1: Compute the activation

            a = np.dot(X, self.weights) + self.bias

            # Step 2: Compute the output

            y_predict = self.step_function(a)

            # Step 3: Compute weight updates

            delta_w = learning_rate * np.dot(X.T, (y - y_predict))

            delta_b = learning_rate * np.sum(y - y_predict)

            # Step 4: Update the parameters

            self.weights += delta_w

            self.bias += delta_b

        return self.weights, self.bias

    def step_function(self, x):

        return np.array([1 if elem >= 0 else 0 for elem in x])[:, np.newaxis]

    def predict(self, X):

        a = np.dot(X, self.weights) + self.bias

        return self.step_function(a)

初始化并训练模型

In [7]:

p = Perceptron()

w_trained, b_trained = p.train(X_train, y_train,learning_rate=0.05, n_iters=500)

测试

In [10]:

y_p_train = p.predict(X_train)

y_p_test = p.predict(X_test)

print(f"training accuracy: {100 - np.mean(np.abs(y_p_train - y_train)) * 100}%")

print(f"test accuracy: {100 - np.mean(np.abs(y_p_test - y_test)) * 100}%")

training accuracy: 100.0%

test accuracy: 100.0%

可视化决策边界

In [13]:

def plot_hyperplane(X, y, weights, bias):

    """

    Plots the dataset and the estimated decision hyperplane

    """

    slope = - weights[0]/weights[1]

    intercept = - bias/weights[1]

    x_hyperplane = np.linspace(-10,10,10)

    y_hyperplane = slope * x_hyperplane + intercept

    fig = plt.figure(figsize=(8,6))

    plt.scatter(X[:,0], X[:,1], c=y)

    plt.plot(x_hyperplane, y_hyperplane, '-')

    plt.title("Dataset and fitted decision hyperplane")

    plt.xlabel("First feature")

    plt.ylabel("Second feature")

    plt.show()

In [14]:

plot_hyperplane(X, y, w_trained, b_trained)

免费视频教程:www.mlxs.top
上一篇 下一篇

猜你喜欢

热点阅读