LeetCode 周赛上分之旅 # 36 KMP 字符串匹配殊途

2023-07-31  本文已影响0人  彭旭锐

周赛 356

T1. 满足目标工作时长的员工数目

T2. 统计完全子数组的数目

T3. 包含三个字符串的最短字符串

T4. 统计范围内的步进数字数


T1. 满足目标工作时长的员工数目

https://leetcode.cn/problems/number-of-employees-who-met-the-target/

题解(模拟)

简单模拟题。

class Solution {
public:
    int numberOfEmployeesWhoMetTarget(vector<int>& hours, int target) {
        int ret = 0;
        for (int i = 0; i < hours.size(); i++) {
            if (hours[i] >= target) ret++;
        }
        return ret;
    }
};
class Solution:
    def numberOfEmployeesWhoMetTarget(self, hours: List[int], target: int) -> int:
        return sum(e >= target for e in hours)

复杂度分析:


T2. 统计完全子数组的数目

https://leetcode.cn/problems/count-complete-subarrays-in-an-array/

题解一(枚举子数组 + 散列表)

枚举子数组,求满足条件的子数组数

class Solution {
public:
    int countCompleteSubarrays(vector<int>& nums) {
        int n = nums.size();
        int ret = 0;
        // 目标元素个数
        int target = unordered_set<int>(nums.begin(), nums.end()).size();
        // 枚举子数组
        for (int i = 0; i < nums.size(); i++) {
            unordered_set<int> curSet;
            for (int j = i; j < nums.size(); j++) {
                curSet.insert(nums[j]);
                if (curSet.size() == target) {
                    ret += n - j;
                    break;
                }
            }
        }
        return ret;
    }
};

复杂度分析:

题解二(滑动窗口 + 散列表)

在题解一中,当子数组的满足条件时,我们不再需要扩展右指针 j,其实左指针 i 也类似。当存在子数组 [i, j] 满足条件时,我们可以收缩左指针到 [i+1, j],如果子数组依然满足条件,则可以继续记录子数组个数 n - j 个。

class Solution {
public:
    int countCompleteSubarrays(vector<int>& nums) {
        int n = nums.size();
        int ret = 0;
        // 目标元素个数
        int target = unordered_set<int>(nums.begin(), nums.end()).size();
        // 滑动窗口
        unordered_map<int, int> cnts;
        int i = 0;
        for (int j = 0; j < nums.size(); j++) {
            cnts[nums[j]]++;
            while (cnts.size() == target) {
                ret += n - j;
                if (--cnts[nums[i]] == 0) cnts.erase(nums[i]);
                i++;
            }
        }
        return ret;
    }
};

复杂度分析:

相似题目:


T3. 包含三个字符串的最短字符串

https://leetcode.cn/problems/shortest-string-that-contains-three-strings/

题解一(贪心)

首先,合并字符串 a 和字符串 b 可以用前后缀分解来模拟:a 的最长后缀与 b 的最长前缀匹配,得到的合并字符串是最短的。而对于目标答案的合并方案来说,必然是 [a, b, c] 的全排列中的一种:

虽然,严谨来说局部贪心是错误的(即先将 a 和 b 合并得到最短字符串 ab,再将 ab 与 c 合并)。例如以下测试用例,这说明在第一次合并中选择最短的字符串,不一定是全局最短的字符串。但是,最优解必然可以通过全排列中的其他方案获得。因此,直接使用 “局部贪心” 即可。

a = "cdaa"
b = "aaef"
c = "daaae"
# a + b + c 其中 a + b = "cdaaef",无法与 c 合并得到最优解 “cdaaaef”
# a + c + b 可以得到最优解 “cdaaaef”
class Solution:
    def minimumString(self, a: str, b: str, c: str) -> str:
        def merge(a: str, b: str) -> str:
            if b in a: return a
            for i in range(min(len(a), len(b)), 0, -1):
                # 前后缀对比
                if a[-i:] == b[:i]: 
                    return a + b[i:]
            return a + b
        ret = ""
        for a, b, c in permutations((a, b, c)): 
            temp = merge(merge(a,b), c)
            # 优先最短字符串,再考虑字典序最小
            if (ret == "" or len(temp) < len(ret) or (len(temp) == len(ret) and temp < ret)):
                ret = temp
        return ret

复杂度分析:

题解二(KMP)

题解一时间复杂度的瓶颈在 merge 函数,对于两个字符串的最长的前后缀匹配长度,这正好就是 KMP 算法中求解 next 数组的步骤,而 KMP 算法的时间复杂度是 O(n),存在优化空间。

另外还有一个细节,在合并 a 和 b 时我们在中间插入分隔符 “#”,这是为了避免匹配长度大于 a 或 b的长度。例如:

a = "cac"
b = "aca"
# 那么 a + b = "cacaca" 会出现匹配长度大于 a 或 b的长度
class Solution:
    def minimumString(self, a: str, b: str, c: str) -> str:
        def merge(a: str, b: str) -> str:
            if b in a: return a
                        # 拼接字符串,以计算 b 的后缀与 a 的前缀的匹配长度
            s = a + "#" + b
            # KMP 求 next 数组
            j, next = 0, [0] * len(s)
            for i in range(1, len(s)):
                while j > 0 and s[i] != s[j]:
                    j = next[j - 1]
                if s[i] == s[j]:
                    j += 1
                next[i] = j
            # next[-1]: s[-1] 的最长匹配前缀
            return b + a[next[-1]:]
        ret = ""
        for a, b, c in permutations((a, b, c)): 
            temp = merge(merge(a,b), c)
            # 优先最短字符串,再考虑字典序最小
            if (ret == "" or len(temp) < len(ret) or (len(temp) == len(ret) and temp < ret)):
                ret = temp
        return ret

复杂度分析:


T4. 统计范围内的步进数字数目

https://leetcode.cn/problems/count-stepping-numbers-in-range/

题解(数位 DP + 记忆化)

相对标准的数位 DP 模板题。

class Solution {
    
    val MOD = 1000000007
    
    fun countSteppingNumbers(low: String, high: String): Int {
        // 数位 DP
        return ((f(high) - f(low) + if (check(low)) 1 else 0) + MOD) % MOD
    }
    
    private fun f(num: String): Int {
        val memo = Array(num.length) { Array(10) { IntArray(2) { -1 } } }
        return dp(memo, 0, num, '0', false, true)
    }
    
    private fun check(num: String) : Boolean {
        for (i in 1 until num.length) {
            if (Math.abs(num[i] - num[i - 1]) != 1) return false
        }
        return true
    }
    
    // dp[i, pre, isNumber]
    private fun dp(memo: Array<Array<IntArray>>, i: Int, high: String, pre: Char, isNumber: Boolean, isLimit: Boolean): Int {
        // 终止条件
        if (i == high.length) {
            return if (isNumber) 1 else 0
        }
        // 读备忘录
        if (!isLimit && -1 != memo[i][pre - '0'][if (isNumber) 1 else 0]) {
            return memo[i][pre - '0'][if(isNumber) 1 else 0]
        }
        var ret = 0
        val lower = '0'
        val upper = if (isLimit) high[i] else '9'
        for (choice in lower .. upper) {
            if (!isNumber || Math.abs(choice - pre) == 1) {
                ret = (ret + dp(memo, i + 1, high, choice, isNumber || choice != '0', isLimit && choice == upper)) % MOD
            }
        }
        if (!isLimit) memo[i][pre - '0'][if (isNumber) 1 else 0] = ret
        return ret
    }
}

复杂度分析:


推荐阅读

LeetCode 上分之旅系列往期回顾:

上一篇 下一篇

猜你喜欢

热点阅读