奥数自学研究

高中奥数 2022-02-24

2022-02-24  本文已影响0人  天目春辉

\subsection{放缩法}

有时我们直接证明不等式A\leqslant B比较困难,可以试着去找一个中间量C,如果有A\leqslant CC\leqslant B同时成立,自然就有A\leqslant B成立所谓“放缩”即将A放大到C,再把C放大到B或者反过来把B缩小到C再缩小到A.不等式证明的技巧,常体现在对放缩尺度的把握上.

2022-02-24-01

(来源: 数学奥林匹克小丛书 第二版 高中卷 不等式的解题方法与技巧 苏勇 熊斌 证明不等式的基本方法 P004 例06)

n是正整数,a_{1},a_{2},\cdots,a_{n}正实数,求证:
\dfrac{1}{a_{1}^{2}}+\dfrac{1}{a_{2}^{2}}+\cdots+\dfrac{1}{a_{n}^{2}}+\dfrac{1}{\left(a_{1}+a_{2}+\cdots+a_{n}\right)^{2}} \geqslant \dfrac{n^{3}+1}{\left(n^{2}+2011\right)^{2}}\left(\frac{1}{a_{1}}+\frac{1}{a_{2}}+\cdots+\frac{1}{a_{n}}+\dfrac{2011}{a_{1}+a_{2}+\cdots+a_{n}}\right)^{2} .

证明

由柯西不等式可得,
\begin{gathered} \left(1+1+\cdots+1+\dfrac{1}{n^{2}}\right)\left(\dfrac{1}{a_{1}^{2}}+\dfrac{1}{a_{2}^{2}}+\cdots+\dfrac{1}{a_{n}^{2}}+\dfrac{1}{\left(a_{1}+a_{2}+\cdots+a_{n}\right)^{2}}\right) \\ \geqslant\left(\dfrac{1}{a_{1}}+\dfrac{1}{a_{2}}+\cdots+\dfrac{1}{a_{n}}+\dfrac{1}{n\left(a_{1}+a_{2}+\cdots+a_{n}\right)}\right)^{2}, \end{gathered}
所以
\begin{aligned} & \dfrac{1}{a_{1}^{2}}+\dfrac{1}{a_{2}^{2}}+\cdots+\dfrac{1}{a_{n}^{2}}+\dfrac{1}{\left(a_{1}+a_{2}+\cdots+a_{n}\right)^{2}} \\ \geqslant & \dfrac{n^{2}}{n^{3}+1}\left(\dfrac{1}{a_{1}}+\dfrac{1}{a_{2}}+\cdots+\dfrac{1}{a_{n}}+\dfrac{1}{n\left(a_{1}+a_{2}+\cdots+a_{n}\right)}\right)^{2}, \end{aligned}
于是只需证
\begin{array}{ll} & \dfrac{n^{2}}{n^{3}+1}\left(\dfrac{1}{a_{1}}+\dfrac{1}{a_{2}}+\cdots+\dfrac{1}{a_{n}}+\dfrac{1}{n\left(a_{1}+a_{2}+\cdots+a_{n}\right)}\right)^{2} \\ & \geqslant \dfrac{n^{3}+1}{\left(n^{2}+2011\right)^{2}}\left(\dfrac{1}{a_{1}}+\dfrac{1}{a_{2}}+\cdots+\dfrac{1}{a_{n}}+\dfrac{2011}{a_{1}+a_{2}+\cdots+a_{n}}\right)^{2} \\ \Leftrightarrow & n\left(n^{2}+2011\right)\left(\dfrac{1}{a_{1}}+\dfrac{1}{a_{2}}+\cdots+\dfrac{1}{a_{n}}+\dfrac{1}{n\left(a_{1}+a_{2}+\cdots+a_{n}\right)}\right) \\ & \geqslant\left(n^{3}+1\right)\left(\dfrac{1}{a_{1}}+\dfrac{1}{a_{2}}+\cdots+\dfrac{1}{a_{n}}+\dfrac{2011}{a_{1}+a_{2}+\cdots+a_{n}}\right) \\ \Leftrightarrow & \left(n^{3}+2011 n\right) \sum\limits_{i=1}^{n} \dfrac{1}{a_{i}}+\left(n^{2}+2011\right) \dfrac{1}{\sum\limits_{i=1}^{n} a_{i}} \\ & \geqslant\left(n^{3}+1\right) \sum\limits_{i=1}^{n} \dfrac{1}{a_{i}}+\left(2011 n^{3}+2011\right) \dfrac{1}{\sum\limits_{i=1}^{n} a_{i}} \\ \Leftrightarrow & (2011 n-1) \sum\limits_{i=1}^{n} \dfrac{1}{a_{i}} \geqslant(2011 n-1) n^{2} \dfrac{1}{\sum\limits_{i=1}^{n} a_{i}} \\ \Leftrightarrow & \sum\limits_{i=1}^{n} a_{i} \sum\limits_{i=1}^{n} \dfrac{1}{a_{i}} \geqslant n^{2},\end{array}
从而命题得证.

2022-02-24-02

(来源: 数学奥林匹克小丛书 第二版 高中卷 不等式的解题方法与技巧 苏勇 熊斌 证明不等式的基本方法 P004 例07)

求证:对任意正实数abc,均有\dfrac{1}{a^{3}+b^{3}+abc}+\dfrac{1}{b^{3}+c^{3}+abc}+\dfrac{1}{c^{3}+a^{3}+abc}\leqslant \dfrac{1}{abc}.

证明

因为
a^{3}+b^{3}=\left(a+b\right)\left(a^{2}+b^{2}-ab\right)\geqslant \left(a+b\right)ab,
所以\dfrac{1}{a^{3}+b^{3}+abc}\leqslant \dfrac{1}{ab\left(a+b\right)+abc}=\dfrac{c}{abc\left(a+b+c\right)},

同理可得\dfrac{1}{b^{3}+c^{3}+aac}\leqslant \dfrac{a}{abc\left(a+b+c\right)},
\dfrac{1}{c^{3}+a^{3}+abc} \leqslant \dfrac{b}{abc\left(a+b+c\right)},
把上面三式相加,便得
\dfrac{1}{a^{3}+b^{3}+abc}+ \dfrac{1}{b^{3}+c^{3}+abc}+ \dfrac{1}{c^{3}+a^{3}+abc}\leqslant \dfrac{1}{abc}.
说明在处理分式不等式时,通分只有在不得已的情况下才进行,若想变为同分母比较简便的一种思想就是“放缩”.

2022-02-24-03

(来源: 数学奥林匹克小丛书 第二版 高中卷 不等式的解题方法与技巧 苏勇 熊斌 证明不等式的基本方法 P005 例08)

a_{i}\geqslant 1\left(i=1,2,\cdots ,n\right),求证:
\left(1+a_{1}\right)\left(1+a_{2}\right)\cdots \left(1+a_{n}\right)\geqslant \dfrac{2^{n}}{n+1}\left(1+a_{1}+a_{2}+\cdots +a_{n}\right).
分析观察两边的式子,首先要设法让左边“变出”2^{n}.

证明
\left(1+a_{1}\right)\left(1+a_{2}\right)\cdots \left(1+a_{n}\right)=2^{n}\left(1+\dfrac{a_{1}-1}{2}\right)\left(1+\dfrac{a_{2}-1}{2}\right)\cdots \left(1+\dfrac{a_{n}-1}{2}\right).
由于a_{i}-1\geqslant 0,可得:
\begin{aligned} &\left(1+a_{1}\right)\left(1+a_{2}\right) \cdots\left(1+a_{n}\right) \\ \geqslant & 2^{n}\left(1+\dfrac{a_{1}-1}{2}+\dfrac{a_{2}-1}{2}+\cdots+\dfrac{a_{n}-1}{2}\right) \\ \geqslant & 2^{n}\left(1+\dfrac{a_{1}-1}{n+1}+\dfrac{a_{2}-1}{n+1}+\cdots+\dfrac{a_{n}-1}{n+1}\right) \\ =& \dfrac{2^{n}}{n+1}\left[n+1+\left(a_{1}-1\right)+\left(a_{2}-1\right)+\cdots+\left(a_{n}-1\right)\right] \\ =& \dfrac{2^{n}}{n+1}\left(1+a_{1}+a_{2}+\cdots+a_{n}\right) . \end{aligned}
故原不等式成立.

2022-02-24-04

(来源: 数学奥林匹克小丛书 第二版 高中卷 不等式的解题方法与技巧 苏勇 熊斌 证明不等式的基本方法 P006 例09)

求最大的实数\alpha,使得\dfrac{x}{\sqrt{y^{2}+z^{2}}}+\dfrac{y}{\sqrt{x^{2}+z^{2}}}+\dfrac{z}{\sqrt{x^{2}+y^{2}}}>\alpha对所有正实数xyz成立.

解法1

x=y,z\rightarrow 0,则原式左端\rightarrow 2,因此,若\alpha>2,将出现矛盾,故\alpha\leqslant 2.

下面证明:\dfrac{x}{\sqrt{y^{2}+z^{2}}}+\dfrac{y}{\sqrt{x^{2}+z^{2}}}+\dfrac{z}{\sqrt{x^{2}+y^{2}}}>2.

不妨设x\leqslant y\leqslant z,我们设法证明
\dfrac{x}{\sqrt{y^{2}+z^{2}}}+\dfrac{y}{\sqrt{x^{2}+z^{2}}}+\dfrac{z}{\sqrt{x^{2}+y^{2}}}>\dfrac{\sqrt{x^{2}+y^{2}}}{\sqrt{z^{2}+x^{2}}}+\dfrac{\sqrt{x^{2}+z^{2}}}{\sqrt{x^{2}+y^{2}}}.
\dfrac{y}{ \sqrt{x^{2}+z^{2}}}\dfrac{z} { \sqrt{x^{2}+y^{2}}}移到右边,即证
\dfrac{x}{\sqrt{y^{2}+z^{2}}}> \dfrac{\sqrt{x^{2}+y^{2}}-y}{\sqrt{x^{2}+z^{2}}}+\dfrac{\sqrt{x^{2}+z^{2}}-z}{\sqrt{x^{2}+y^{2}}}.
也即
\dfrac{x}{\sqrt{y^{2}+z^{2}}}>\dfrac{x^{2}}{\sqrt{x^{2}+y^{2}}\left(\sqrt{x^{2}+y^{2}}+y\right)}+\dfrac{x^{2}}{\sqrt{x^{2}+y^{2}}\left(\sqrt{x^{2}+z^{2}}+z\right)}.
两边约去x,并且由于\sqrt{x^{2}+y^{2}}+y>2y,\sqrt{x^{2}+z^{2}}+z>2z,所以,只要证明
\dfrac{1}{\sqrt{y^{2}+z^{2}}}\geqslant \dfrac{x}{2y\sqrt{x^{2}+z^{2}}}+\dfrac{x}{2z\sqrt{x^{2}+y^{2}}}.
由于\dfrac{x}{\sqrt{x^{2}+z^{2}}}=\dfrac{1}{\sqrt{1+\left(\dfrac{z}{x}\right)^{2}}},所以\dfrac{x}{\sqrt{x^{2}+z^{2}}}x的增大而增大.

同样,\dfrac{x}{\sqrt{x^{2}+y^{2}}}也随x的增大而增大.

所以我们只须考虑x=y时的情况.

x=y,即证
\dfrac{1}{\sqrt{y^{2}+z^{2}}}\geqslant \dfrac{1}{2\sqrt{y^{2}+z^{2}}}+\dfrac{1}{2\sqrt{2}z},
也就是\dfrac{1}{2\sqrt{y^{2}+z^{2}}}\geqslant \dfrac{1}{2\sqrt{2}z},即证\sqrt{2}z\geqslant \sqrt{y^{2}+z^{2}}.

这是显然成立的.

因此,
\dfrac{x}{\sqrt{y^{2}+z^{2}}}+\dfrac{y}{\sqrt{x^{2}+z^{2}}}+\dfrac{z}{\sqrt{x^{2}+y^{2}}}>\dfrac{\sqrt{x^{2}+y^{2}}}{\sqrt{x^{2}+z^{2}}}+\dfrac{\sqrt{x^{2}+z^{2}}}{\sqrt{x^{2}+y^{2}}}\geqslant 2.

\alpha_{\max}=2.

说明本题也可利用待定系数法给出解答.

解法2

同样,我们来证明
\dfrac{x}{\sqrt{y^{2}+z^{2}}}+\dfrac{y}{\sqrt{z^{2}+x^{2}}}+\dfrac{z}{\sqrt{x^{2}+y^{2}}}>2.

\dfrac{x}{\sqrt{y^{2}+z^{2}}}\geqslant \dfrac{2x^{a}}{x^{a}+y^{a}+z^{a}}.\qquad(*)
其中a为待定参数.

注意到(*)等价于\left(x^{a}+y^{a}+z^{a}\right)^{2}\geqslant 4x^{2a-2}\left(y^{2}+z^{2}\right).

上式左边\geqslant 4x^{a}\left(y^{a}+z^{a}\right),故只须保证
y^{a}+z^{a}\geqslant x^{a-2}\left(y^{2}+z^{2}\right).
不难发现,取a=2即可.于是
\sum \dfrac{x}{\sqrt{y^{2}+z^{2}}} \geqslant \sum \dfrac{2 x^{2}}{x^{2}+y^{2}+z^{2}}=2.
而等号显然不可能成立,所以\sum\dfrac{x}{\sqrt{y^{2}+z^{2}}}>2.

\alpha_{\max}=2.

2022-02-24-05

(来源: 数学奥林匹克小丛书 第二版 高中卷 不等式的解题方法与技巧 苏勇 熊斌 证明不等式的基本方法 P007 例10)

设非负实数a_{1},a_{2},\cdots ,a_{n}b_{1},b_{2},\cdots b_{n}同时满足以下条件:

(1)\sum\limits_{i=1}^{n}\left(a_{i}+b_{i}\right)=1;

(2)\sum\limits_{i=1}^{n}i\left(a_{i}-b_{i}\right)=0;

(3)\sum\limits_{i=1}^{n}i^{2}\left(a_{i}-b_{i}\right)=10.

求证:对任意1\leqslant k\leqslant n,都有\max\left\{a_{k},b_{k}\right\}\leqslant\dfrac{10}{10+k^{2}}.(2010年中国西部数学奥林匹克)

证明

对任意1\leqslant k\leqslant n,有
\begin{aligned} \left(k a_{k}\right)^{2} & \leqslant\left(\sum\limits_{i=1}^{n} i a_{i}\right)^{2}\\ &=\left(\sum\limits_{i=1}^{n} i b_{i}\right)^{2} \\ &\leqslant\left(\sum\limits_{i=1}^{n} i^{2} b_{i}\right) \cdot\left(\sum\limits_{i=1}^{n} b_{i}\right) \\ &=\left(10-\sum\limits_{i=1}^{n} i^{2} a_{i}\right) \cdot\left(1-\sum\limits_{i=1}^{n} a_{i}\right) \\ & \leqslant\left(10-k^{2} a_{k}\right) \cdot\left(1-a_{k}\right)\\ &=10-\left(10+k^{2}\right) a_{k}+k^{2} a_{k}^{2}, \end{aligned}
从而a_{k}\leqslant \dfrac{10}{10+k^{2}}.

同理有b_{k} \leqslant \dfrac{10}{10+k^{2}},所以,所以\max\left\{a_{k},b_{k}\right\}\leqslant \dfrac{10}{10+k^{2}}.

2022-02-24-06

(来源: 数学奥林匹克小丛书 第二版 高中卷 不等式的解题方法与技巧 苏勇 熊斌 证明不等式的基本方法 P008 例11)

正实数xyz满足xyz\geqslant 1,证明
\dfrac{x^{5}-x^{2}}{x^{5}+y^{2}+z^{2}}+\dfrac{y^{5}-y^{2}}{y^{5}+z^{2}+x^{2}}+\dfrac{z^{5}-z^{2}}{z^{5}+x^{2}+y^{2}}\geqslant 0.
(2005年国际数学奥林匹克)

证明

原不等式可变形为
\dfrac{x^{2}+y^{2}+z^{2}}{x^{5}+y^{2}+z^{2}}+\dfrac{x^{2}+y^{2}+z^{2}}{y^{5}+z^{2}+x^{2}}+\dfrac{x^{2}+y^{2}+z^{2}}{z^{5}+x^{2}+y^{2}}\leqslant 3.
由柯西不等式及题设条件xyz\geqslant 1,得
\left(x^{5}+y^{2}+z^{2}\right)\left(yz+y^{2}+z^{2}\right)\geqslant \left(x^{2}\left(xyz\right)^{\frac{1}{5}}+y^{2}+z^{2}\right)^{2}\geqslant \left(x^{2}+y^{2}+z^{2}\right)^{2},
\dfrac{x^{2}+y^{2}+z^{2}}{x^{5}+y^{2}+z^{2}}\leqslant \dfrac{yz+y^{2}+z^{2}}{x^{2}+y^{2}+z^{2}}.

同理
\dfrac{x^{2}+y^{2}+z^{2}}{y^{5}+z^{2}+x^{2}}\leqslant \dfrac{zx+z^{2}+x^{2}}{x^{2}+y^{2}+z^{2}},
\dfrac{x^{2}+y^{2}+z^{2}}{z^{5}+x^{2}+y^{2}}\leqslant \dfrac{xy+x^{2}+y^{2}}{x^{2}+y^{2}+z^{2}},
把上面三个不等式相加,并利用x^{2}+y^{2}+z^{2}\geqslant xy+yz+zx,得
\dfrac{x^{2}+y^{2}+z^{2}}{x^{5}+y^{2}+z^{2}}+\dfrac{x^{2}+y^{2}+z^{2}}{y^{5}+z^{2}+x^{2}}+\dfrac{x^{2}+y^{2}+z^{2}}{z^{5}+x^{2}+y^{2}} \leqslant 2+\dfrac{x y+y z+z x}{x^{2}+y^{2}+z^{2}} \leqslant 3 .
摩尔多瓦选手Boreico Iurie的解法获得了特别奖.他的证法如下:

因为
\frac{x^{5}-x^{2}}{x^{5}+y^{2}+z^{2}}-\frac{x^{5}-x^{2}}{x^{3}\left(x^{2}+y^{2}+z^{2}\right)}=\frac{x^{2}\left(x^{3}-1\right)^{2}\left(y^{2}+z^{2}\right)}{x^{3}\left(x^{5}+y^{2}+z^{2}\right)\left(x^{2}+y^{2}+z^{2}\right)} \geqslant 0,
所以
\begin{aligned} \sum\limits_{c y c} \dfrac{x^{5}-x^{2}}{x^{5}+y^{2}+z^{2}} & \geqslant \sum\limits_{c y c} \dfrac{x^{5}-x^{2}}{x^{3}\left(x^{2}+y^{2}+z^{2}\right)}\\ &=\dfrac{1}{x^{2}+y^{2}+z^{2}} \sum\limits_{c y c}\left(x^{2}-\dfrac{1}{x}\right) \\ & \geqslant \dfrac{1}{x^{2}+y^{2}+z^{2}} \sum\limits_{c y c}\left(x^{2}-y z\right) \text { (因为 } x y z \geqslant 1 \text { ) } \\ & \geqslant 0 . \end{aligned}

上一篇下一篇

猜你喜欢

热点阅读