微生物扩增子微生物

16S rRNA扩增子之alpha多样性结果可视化(分面和拼图)

2020-04-26  本文已影响0人  你猜我菜不菜

数据的分析和可视化工作没有止境!

1. alpha多样性数据导入和整理

数据来自公司给的alpha多样性指数数据表格,主要包括Observe,Chao1,ACE, Shannon和Simpson指数。


#载入包
library(tidyverse)
library(ggsignif) #统计分析并标记显著性

#alpha多样性数据导入和转换
alpha_data <- read.csv('alpha_wide.csv',  sep = ',', 
                       stringsAsFactors = FALSE,check.names = FALSE)

#宽数据转化为长数据
alpha_tidy_data <- alpha_data %>% 
  pivot_longer(-sample, names_to = "alpha_index", values_to = "value")
write.csv(alpha_tidy_data, file = "alpha_tidy_data.csv")

#手动添加了分组信息后再次导入数据
alpha_data <- read.csv('alpha_tidy_data.csv', row.names = 1, 
                       header = TRUE, sep = ',', 
                       stringsAsFactors = FALSE,check.names = FALSE)
head(alpha_data)

使用tidyverse包将宽数据变成了长数据,但使用R进一步整理数据表格能力有限,在长数据中手动添加了一些分组信息。


2. 在不同时间点上对照组和处理组间的多样性指标的差异
#因子排序,对多样性指数指标进行排序
alpha_data$alpha_index <- factor(alpha_data$alpha_index, 
                          levels = c("Observe", "Chao1", "ACE",
                                     "Shannon", "Simpson"), 
                          ordered = TRUE)

#ggplot2画图
library(scales)
library(facetscales) #facetscales包可以控制分面后Y轴刻度

#设置分面后各个部分的Y轴刻度
scales_y <- list(
  ACE = scale_y_continuous(limits = c(50, 162), breaks = seq(50, 162, 30)),
  Chao1 = scale_y_continuous(limits = c(50, 160), breaks = seq(50, 160, 30)),
  Observe = scale_y_continuous(limits = c(50, 155), breaks = seq(50, 155, 30)),
  Shannon = scale_y_continuous(limits = c(1.7, 2.5), breaks = seq(1.7, 2.6, 0.25)),
  Simpson = scale_y_continuous(limits = c(0.10, 0.40), breaks = seq(0.10, 0.40, 0.1))
)

#修改分面标题
to_string <- as_labeller(c(`1` = "1DPE", `7` = "7DPE", 
                           `14` = "14DPE",`ACE` = "ACE"))  

#画图
p_alpha <- ggplot(data = alpha_data, mapping = aes(x = treatment, y = value)) + 
  geom_violin(mapping = aes(fill = treatment),width = 0.8, size = 0.2) + #小提琴图
  geom_boxplot(width = 0.1, linetype = 1, size = 0.2,outlier.size = 0.7) + #箱线图
  facet_grid_sc(alpha_data$alpha_index~alpha_data$time, #两个维度上的分面,
  #按不同的多样性指数分面,按不同时间分面。
                scales = list(y = scales_y),
                labeller = to_string) + 
  scale_fill_manual(values=c("#2874C5", "#EABF00")) + #指定颜色
  theme(legend.position="none", 
        plot.margin =unit(c(2,2,2,0),"mm"),
        axis.ticks.y=element_blank(),
        panel.grid=element_blank(),
        strip.background = element_rect(colour=NA, fill="grey"),
        axis.title.x = element_text(size = 16, vjust = 0.5, 
                                   hjust = 0.5),
        axis.title.y = element_text(size = 18, vjust = 0.5, 
                                    hjust = 0.5),
        axis.text.x = element_text(angle = 0, size = 10,
                                   vjust = 0.5, hjust = 0.5),
        axis.text.y = element_text(size = 15,vjust = 0.5, 
                                   hjust = 0.5)) +
  theme_bw() + labs(x = '', y = '', fill = "Treatment")+
  geom_signif(comparisons = list(c("UN","IR")),
              map_signif_level = TRUE,
              textsize=3, size = 0.3, vjust = 0) 

p_alpha
3. 随着时间变化多样性指标的变化趋势

通过分组拟合数据点展示变化趋势

p_alpha_fit <- ggplot() + 
  geom_smooth(data = alpha_data,  #拟合
              mapping = aes(x = time, y = value, 
                            fill = treatment,  #拟合线的置信区间的填色
                            color = treatment,  #拟合线的填色
                            group = treatment), #分组
              size = 1.2, level = 0.95, alpha=0.3) +
  scale_color_manual(values=c("#2874C5", "#EABF00")) + 
  scale_fill_manual(values=c("#2874C5", "#EABF00")) + 
  theme_bw() + facet_grid_sc(rows = vars(alpha_index), #分面
                          scales = list(y = scales_y)) +
  theme(plot.margin =unit(c(2,2,2,0),"mm"),
        axis.ticks.y=element_blank(),
        plot.title = element_text(size = 12, vjust = 0.5, 
                                  hjust=0.5),
        axis.title.x = element_text(size = 12,  hjust = 0.5, 
                                    vjust = 0.5),
        axis.title.y = element_text(size = 12, vjust = 0.5, 
                                    hjust = 0.5),
        axis.text.x = element_text(size = 8,vjust = 0.5, 
                                   hjust = 0.5),
        axis.text.y = element_text(size = 8,vjust = 0.5, 
                                   hjust = 0.5))  + 
  labs(x = '', y = '', color = "Treatment", title = "") +
  guides(fill = "none", color = "none") + 
  scale_x_continuous(breaks = c(1, 7, 14), 
                     labels = c("1DPE", "7DPE", "14DPE"))  #指定X轴刻度的标记

p_alpha_fit
4. 使用patchwork包拼图

之前使用过cowplot包来拼图,最近发现patchwork包拼图更优秀,它使用“+”,“/”,“()”等简单的符号进行拼图,并且不限于ggplot系列的图片。

#将p_alpha和p_alpha_fit拼图
library(patchwork)
(p_alpha + p_alpha_fit) + plot_layout(widths = c(3, 1)) +  #以3:1宽度比例拼两张图.
  plot_layout(guides = 'collect') #图例自动校正到合适位置

需要进一步学习R中的数据清洗,R for data science这本书还得看好几遍,熟练使用tidyverse中的 dplyrtidyr包,强迫自己在R中完成所有的数据处理和转换工作。

上一篇 下一篇

猜你喜欢

热点阅读