万字长文:一致性Hash在负载均衡中的应用,看完我沸腾了!
简介
一致性Hash是一种特殊的Hash算法,由于其均衡性、持久性的映射特点,被广泛的应用于负载均衡领域,如nginx和memcached都采用了一致性Hash来作为集群负载均衡的方案。
本文将介绍一致性Hash的基本思路,并讨论其在分布式缓存集群负载均衡中的应用。同时也会进行相应的代码测试来验证其算法特性,并给出和其他负载均衡方案的一些对比。
一致性Hash算法简介
在了解一致性Hash算法之前,先来讨论一下Hash本身的特点。普通的Hash函数最大的作用是散列,或者说是将一系列在形式上具有相似性质的数据,打散成随机的、均匀分布的数据。
比如,对字符串abc和abcd分别进行md5计算,得到的结果如下:
万字长文:一致性Hash在负载均衡中的应用,看完我沸腾了!可以看到,两个在形式上非常相近的数据经过md5散列后,变成了完全随机的字符串。负载均衡正是利用这一特性,对于大量随机的请求或调用,通过一定形式的Hash将他们均匀的散列,从而实现压力的平均化。(当然,并不是只要使用了Hash就一定能够获得均匀的散列,后面会分析这一点。)
举个例子,如果我们给每个请求生成一个Key,只要使用一个非常简单的Hash算法Group = Key % N来实现请求的负载均衡,如下:
万字长文:一致性Hash在负载均衡中的应用,看完我沸腾了!(如果将Key作为缓存的Key,对应的Group储存该Key的Value,就可以实现一个分布式的缓存系统,后文的具体例子都将基于这个场景)
不难发现,这样的Hash只要集群的数量N发生变化,之前的所有Hash映射就会全部失效。如果集群中的每个机器提供的服务没有差别,倒不会产生什么影响,但对于分布式缓存这样的系统而言,映射全部失效就意味着之前的缓存全部失效,后果将会是灾难性的。
一致性Hash通过构建环状的Hash空间代替线性Hash空间的方法解决了这个问题,如下图:
万字长文:一致性Hash在负载均衡中的应用,看完我沸腾了!整个Hash空间被构建成一个首尾相接的环,使用一致性Hash时需要进行两次映射。
第一次,给每个节点(集群)计算Hash,然后记录它们的Hash值,这就是它们在环上的位置。
第二次,给每个Key计算Hash,然后沿着顺时针的方向找到环上的第一个节点,就是该Key储存对应的集群。
分析一下节点增加和删除时对负载均衡的影响,如下图:
万字长文:一致性Hash在负载均衡中的应用,看完我沸腾了!可以看到,当节点被删除时,其余节点在环上的映射不会发生改变,只是原来打在对应节点上的Key现在会转移到顺时针方向的下一个节点上去。增加一个节点也是同样的,最终都只有少部分的Key发生了失效。不过发生节点变动后,整体系统的压力已经不是均衡的了,下文中提到的方法将会解决这个问题。
问题与优化
最基本的一致性Hash算法直接应用于负载均衡系统,效果仍然是不理想的,存在诸多问题,下面就对这些问题进行逐个分析并寻求更好的解决方案。
数据倾斜
如果节点的数量很少,而hash环空间很大(一般是 0 ~ 2^32),直接进行一致性hash上去,大部分情况下节点在环上的位置会很不均匀,挤在某个很小的区域。最终对分布式缓存造成的影响就是,集群的每个实例上储存的缓存数据量不一致,会发生严重的数据倾斜。
缓存雪崩
如果每个节点在环上只有一个节点,那么可以想象,当某一集群从环中消失时,它原本所负责的任务将全部交由顺时针方向的下一个集群处理。例如,当group0退出时,它原本所负责的缓存将全部交给group1处理。这就意味着group1的访问压力会瞬间增大。设想一下,如果group1因为压力过大而崩溃,那么更大的压力又会向group2压过去,最终服务压力就像滚雪球一样越滚越大,最终导致雪崩。
引入虚拟节点
解决上述两个问题最好的办法就是扩展整个环上的节点数量,因此我们引入了虚拟节点的概念。一个实际节点将会映射多个虚拟节点,这样Hash环上的空间分割就会变得均匀。
同时,引入虚拟节点还会使得节点在Hash环上的顺序随机化,这意味着当一个真实节点失效退出后,它原来所承载的压力将会均匀地分散到其他节点上去。
如下图:
万字长文:一致性Hash在负载均衡中的应用,看完我沸腾了!代码测试
现在我们尝试编写一些测试代码,来看看一致性hash的实际效果是否符合我们预期。
首先我们需要一个能够对输入进行均匀散列的Hash算法,可供选择的有很多,memcached官方使用了基于md5的KETAMA算法,但这里处于计算效率的考虑,使用了FNV1_32_HASH算法,如下:
public class HashUtil { /** * 计算Hash值, 使用FNV1_32_HASH算法 * @param str * @return */ public static int getHash(String str) { final int p = 16777619; int hash = (int)2166136261L; for (int i = 0; i < str.length(); i++) { hash =( hash ^ str.charAt(i) ) * p; } hash += hash << 13; hash ^= hash >> 7; hash += hash << 3; hash ^= hash >> 17; hash += hash << 5; if (hash < 0) { hash = Math.abs(hash); } return hash; }}
实际使用时可以根据需求调整。
接着需要使用一种数据结构来保存hash环,可以采用的方案有很多种,最简单的是采用数组或链表。但这样查找的时候需要进行排序,如果节点数量多,速度就可能变得很慢。
针对集群负载均衡状态读多写少的状态,很容易联想到使用二叉平衡树的结构去储存,实际上可以使用TreeMap(内部实现是红黑树)来作为Hash环的储存结构。
先编写一个最简单的,无虚拟节点的Hash环测试:
public class ConsistentHashingWithoutVirtualNode { /** * 集群地址列表 */ private static String[] groups = { "192.168.0.0:111", "192.168.0.1:111", "192.168.0.2:111", "192.168.0.3:111", "192.168.0.4:111" }; /** * 用于保存Hash环上的节点 */ private static SortedMap<Integer, String> sortedMap = new TreeMap<>(); /** * 初始化,将所有的服务器加入Hash环中 */ static { // 使用红黑树实现,插入效率比较差,但是查找效率极高 for (String group : groups) { int hash = HashUtil.getHash(group); System.out.println("[" + group + "] launched @ " + hash); sortedMap.put(hash, group); } } /** * 计算对应的widget加载在哪个group上 * * @param widgetKey * @return */ private static String getServer(String widgetKey) { int hash = HashUtil.getHash(widgetKey); // 只取出所有大于该hash值的部分而不必遍历整个Tree SortedMap<Integer, String> subMap = sortedMap.tailMap(hash); if (subMap == null || subMap.isEmpty()) { // hash值在最尾部,应该映射到第一个group上 return sortedMap.get(sortedMap.firstKey()); } return subMap.get(subMap.firstKey()); } public static void main(String[] args) { // 生成随机数进行测试 Map<String, Integer> resMap = new HashMap<>(); for (int i = 0; i < 100000; i++) { Integer widgetId = (int)(Math.random() * 10000); String server = getServer(widgetId.toString()); if (resMap.containsKey(server)) { resMap.put(server, resMap.get(server) + 1); } else { resMap.put(server, 1); } } resMap.forEach( (k, v) -> { System.out.println("group " + k + ": " + v + "(" + v/1000.0D +"%)"); } ); }}
生成10000个随机数字进行测试,最终得到的压力分布情况如下:
[192.168.0.1:111] launched @ 8518713[192.168.0.2:111] launched @ 1361847097[192.168.0.3:111] launched @ 1171828661[192.168.0.4:111] launched @ 1764547046group 192.168.0.2:111: 8572(8.572%)group 192.168.0.1:111: 18693(18.693%)group 192.168.0.4:111: 17764(17.764%)group 192.168.0.3:111: 27870(27.87%)group 192.168.0.0:111: 27101(27.101%)
可以看到压力还是比较不平均的,所以我们继续,引入虚拟节点:
public class ConsistentHashingWithVirtualNode { /** * 集群地址列表 */ private static String[] groups = { "192.168.0.0:111", "192.168.0.1:111", "192.168.0.2:111", "192.168.0.3:111", "192.168.0.4:111" }; /** * 真实集群列表 */ private static List<String> realGroups = new LinkedList<>(); /** * 虚拟节点映射关系 */ private static SortedMap<Integer, String> virtualNodes = new TreeMap<>(); private static final int VIRTUAL_NODE_NUM = 1000; static { // 先添加真实节点列表 realGroups.addAll(Arrays.asList(groups)); // 将虚拟节点映射到Hash环上 for (String realGroup: realGroups) { for (int i = 0; i < VIRTUAL_NODE_NUM; i++) { String virtualNodeName = getVirtualNodeName(realGroup, i); int hash = HashUtil.getHash(virtualNodeName); System.out.println("[" + virtualNodeName + "] launched @ " + hash); virtualNodes.put(hash, virtualNodeName); } } } private static String getVirtualNodeName(String realName, int num) { return realName + "&&VN" + String.valueOf(num); } private static String getRealNodeName(String virtualName) { return virtualName.split("&&")[0]; } private static String getServer(String widgetKey) { int hash = HashUtil.getHash(widgetKey); // 只取出所有大于该hash值的部分而不必遍历整个Tree SortedMap<Integer, String> subMap = virtualNodes.tailMap(hash); String virtualNodeName; if (subMap == null || subMap.isEmpty()) { // hash值在最尾部,应该映射到第一个group上 virtualNodeName = virtualNodes.get(virtualNodes.firstKey()); }else { virtualNodeName = subMap.get(subMap.firstKey()); } return getRealNodeName(virtualNodeName); } public static void main(String[] args) { // 生成随机数进行测试 Map<String, Integer> resMap = new HashMap<>(); for (int i = 0; i < 100000; i++) { Integer widgetId = i; String group = getServer(widgetId.toString()); if (resMap.containsKey(group)) { resMap.put(group, resMap.get(group) + 1); } else { resMap.put(group, 1); } } resMap.forEach( (k, v) -> { System.out.println("group " + k + ": " + v + "(" + v/100000.0D +"%)"); } ); }}
这里真实节点和虚拟节点的映射采用了字符串拼接的方式,这种方式虽然简单但很有效,memcached官方也是这么实现的。将虚拟节点的数量设置为1000,重新测试压力分布情况,结果如下:
group 192.168.0.2:111: 18354(18.354%)group 192.168.0.1:111: 20062(20.062%)group 192.168.0.4:111: 20749(20.749%)group 192.168.0.3:111: 20116(20.116%)group 192.168.0.0:111: 20719(20.719%)
可以看到基本已经达到平均分布了,接着继续测试删除和增加节点给整个服务带来的影响,相关测试代码如下:
private static void refreshHashCircle() { // 当集群变动时,刷新hash环,其余的集群在hash环上的位置不会发生变动 virtualNodes.clear(); for (String realGroup: realGroups) { for (int i = 0; i < VIRTUAL_NODE_NUM; i++) { String virtualNodeName = getVirtualNodeName(realGroup, i); int hash = HashUtil.getHash(virtualNodeName); System.out.println("[" + virtualNodeName + "] launched @ " + hash); virtualNodes.put(hash, virtualNodeName); } }}private static void addGroup(String identifier) { realGroups.add(identifier); refreshHashCircle();}private static void removeGroup(String identifier) { int i = 0; for (String group:realGroups) { if (group.equals(identifier)) { realGroups.remove(i); } i++; } refreshHashCircle();}
测试删除一个集群前后的压力分布如下:
running the normal test.group 192.168.0.2:111: 19144(19.144%)group 192.168.0.1:111: 20244(20.244%)group 192.168.0.4:111: 20923(20.923%)group 192.168.0.3:111: 19811(19.811%)group 192.168.0.0:111: 19878(19.878%)removed a group, run test again.group 192.168.0.2:111: 23409(23.409%)group 192.168.0.1:111: 25628(25.628%)group 192.168.0.4:111: 25583(25.583%)group 192.168.0.0:111: 25380(25.38%)
同时计算一下消失的集群上的Key最终如何转移到其他集群上:
[192.168.0.1:111-192.168.0.4:111] :5255[192.168.0.1:111-192.168.0.3:111] :5090[192.168.0.1:111-192.168.0.2:111] :5069[192.168.0.1:111-192.168.0.0:111] :4938
可见,删除集群后,该集群上的压力均匀地分散给了其他集群,最终整个集群仍处于负载均衡状态,符合我们的预期,最后看一下添加集群的情况。
压力分布:
running the normal test.group 192.168.0.2:111: 18890(18.89%)group 192.168.0.1:111: 20293(20.293%)group 192.168.0.4:111: 21000(21.0%)group 192.168.0.3:111: 19816(19.816%)group 192.168.0.0:111: 20001(20.001%)add a group, run test again.group 192.168.0.2:111: 15524(15.524%)group 192.168.0.7:111: 16928(16.928%)group 192.168.0.1:111: 16888(16.888%)group 192.168.0.4:111: 16965(16.965%)group 192.168.0.3:111: 16768(16.768%)group 192.168.0.0:111: 16927(16.927%)
压力转移:
[192.168.0.0:111-192.168.0.7:111] :3102[192.168.0.4:111-192.168.0.7:111] :4060[192.168.0.2:111-192.168.0.7:111] :3313[192.168.0.1:111-192.168.0.7:111] :3292[192.168.0.3:111-192.168.0.7:111] :3261
综上可以得出结论,在引入足够多的虚拟节点后,一致性hash还是能够比较完美地满足负载均衡需要的。
优雅缩扩容
缓存服务器对于性能有着较高的要求,因此我们希望在扩容时新的集群能够较快的填充好数据并工作。但是从一个集群启动,到真正加入并可以提供服务之间还存在着不小的时间延迟,要实现更优雅的扩容,我们可以从两个方面出发:
- 高频Key预热负载均衡器作为路由层,是可以收集并统计每个缓存Key的访问频率的,如果能够维护一份高频访问Key的列表,新的集群在启动时根据这个列表提前拉取对应Key的缓存值进行预热,便可以大大减少因为新增集群而导致的Key失效。具体的设计可以通过缓存来实现,如下:不过这个方案在实际使用时有一个很大的限制,那就是高频Key本身的缓存失效时间可能很短,预热时储存的Value在实际被访问到时可能已经被更新或者失效,处理不当会导致出现脏数据,因此实现难度还是有一些大的。
- 历史Hash环保留回顾一致性Hash的扩容,不难发现新增节点后,它所对应的Key在原来的节点还会保留一段时间。因此在扩容的延迟时间段,如果对应的Key缓存在新节点上还没有被加载,可以去原有的节点上尝试读取。举例,假设我们原有3个集群,现在要扩展到6个集群,这就意味着原有50%的Key都会失效(被转移到新节点上),如果我们维护扩容前和扩容后的两个Hash环,在扩容后的Hash环上找不到Key的储存时,先转向扩容前的Hash环寻找一波,如果能够找到就返回对应的值并将该缓存写入新的节点上,找不到时再透过缓存,如下图:这样做的缺点是增加了缓存读取的时间,但相比于直接击穿缓存而言还是要好很多的。优点则是可以随意扩容多台机器,而不会产生大面积的缓存失效。
谈完了扩容,再谈谈缩容。
- 熔断机制缩容后,剩余各个节点上的访问压力都会有所增加,此时如果某个节点因为压力过大而宕机,就可能会引发连锁反应。因此作为兜底方案,应当给每个集群设立对应熔断机制来保护服务的稳定性。
- 多集群LB的更新延迟这个问题在缩容时比较严重,如果你使用一个集群来作为负载均衡,并使用一个配置服务器比如ConfigServer来推送集群状态以构建Hash环,那么在某个集群退出时这个状态并不一定会被立刻同步到所有的LB上,这就可能会导致一个暂时的调度不一致,如下图:如果某台LB错误地将请求打到了已经退出的集群上,就会导致缓存击穿。解决这个问题主要有以下几种思路:- 缓慢缩容,等到Hash环完全同步后再操作。可以通过监听退出集群的访问QPS来实现这一点,等到该集群几乎没有QPS时再将其撤下。 - 手动删除,如果Hash环上对应的节点找不到了,就手动将其从Hash环上删除,然后重新进行调度,这个方式有一定的风险,对于网络抖动等异常情况兼容的不是很好。 - 主动拉取和重试,当Hash环上节点失效时,主动从ZK上重新拉取集群状态来构建新Hash环,在一定次数内可以进行多次重试。
对比:HashSlot
了解了一致性Hash算法的特点后,我们也不难发现一些不尽人意的地方:
- 整个分布式缓存需要一个路由服务来做负载均衡,存在单点问题(如果路由服务挂了,整个缓存也就凉了)
- Hash环上的节点非常多或者更新频繁时,查找性能会比较低下
针对这些问题,Redis在实现自己的分布式集群方案时,设计了全新的思路:基于P2P结构的HashSlot算法,下面简单介绍一下:
- 使用HashSlot类似于Hash环,Redis Cluster采用HashSlot来实现Key值的均匀分布和实例的增删管理。首先默认分配了16384个Slot(这个大小正好可以使用2kb的空间保存),每个Slot相当于一致性Hash环上的一个节点。接入集群的所有实例将均匀地占有这些Slot,而最终当我们Set一个Key时,使用CRC16(Key) % 16384来计算出这个Key属于哪个Slot,并最终映射到对应的实例上去。那么当增删实例时,Slot和实例间的对应要如何进行对应的改动呢?举个例子,原本有3个节点A,B,C,那么一开始创建集群时Slot的覆盖情况是: 节点A 0-5460 节点B 5461-10922 节点C 10923-16383 现在假设要增加一个节点D,RedisCluster的做法是将之前每台机器上的一部分Slot移动到D上(注意这个过程也意味着要对节点D写入的KV储存),成功接入后Slot的覆盖情况将变为如下情况: 节点A 1365-5460 节点B 6827-10922 节点C 12288-16383 节点D 0-1364,5461-6826,10923-12287 同理删除一个节点,就是将其原来占有的Slot以及对应的KV储存均匀地归还给其他节点。
- P2P节点寻找现在我们考虑如何实现去中心化的访问,也就是说无论访问集群中的哪个节点,你都能够拿到想要的数据。其实这有点类似于路由器的路由表,具体说来就是:* 每个节点都保存有完整的HashSlot - 节点映射表,也就是说,每个节点都知道自己拥有哪些Slot,以及某个确定的Slot究竟对应着哪个节点。* 无论向哪个节点发出寻找Key的请求,该节点都会通过CRC(Key) % 16384计算该Key究竟存在于哪个Slot,并将请求转发至该Slot所在的节点。总结一下就是两个要点:映射表和内部转发,这是通过著名的Gossip协议来实现的。
最后我们可以给出Redis Cluster的系统结构图,和一致性Hash环还是有着很明显的区别的:
万字长文:一致性Hash在负载均衡中的应用,看完我沸腾了!对比一下,HashSlot + P2P的方案解决了去中心化的问题,同时也提供了更好的动态扩展性。但相比于一致性Hash而言,其结构更加复杂,实现上也更加困难。
而在之前的分析中我们也能看出,一致性Hash方案整体上还是有着不错的表现的,因此在实际的系统应用中,可以根据开发成本和性能要求合理地选择最适合的方案。总之,两者都非常优秀,至于用哪个、怎么用,就是仁者见仁智者见智的问题了。
image.png