ClickHouse——数据一致性

2023-03-04  本文已影响0人  小波同学

前言

在生产环境中,数据一致性的重要性,不论如何强调都不过分。而 ClickHouse 在进行数据变更时,都会产生一个临时分区,而不会更改原始数据文件,对数据文件的修改操作会要等到数据合并时才进行。所以 ClickHouse 只能保证数据的最终一致性,而不能保证强一致性。很可能数据变更后,程序通过 ClickHouse 查到之前的错误数据。因此使用 ClickHouse ,要尽量避免数据的增删改这类数据变更操作。但是实际使用时,又不可避免的要使用数据变更操作。这时就需要有一套策略来全面处理数据一致性问题。

首先,对于分布式表,最好的办法是尽量避免使用。如果非要使用分布式表,一定要打开internal_replication。每个分片一定要配置多副本机制,使用副本机制来保证副本之间的数据一致性。

一般来说,分布式表会带来非常多的问题。往分布式表中导入数据时,数据是异步写入到不同的分片当中的,这样数据写入过程中就不可避免的有先有后。在最后一个分片的数据写入完成之前,不可避免的就会产生数据一致性的问题。

另外,对于分布式表,如果在数据写入时,这个分片的服务宕机了,那么插入的数据就有可能会丢失。ClickHouse 的做法是将这个数据分片转移到 broken 子目录中,并不再使用这个数据分片。也就是说,这时,ClickHouse 这一次的数据写入操作 ius 丢失了。造成的结果就是有可能就是一次 update 操作要更新 1000 条数据,但是最终却只更新了 900 条。

然后,对于本地的数据库,也一定要注意多副本造成的数据一致性问题。ClickHouse 中,即使是提供了去重功能的 ReplacingMergeTree,它只能保证在数据合并时会去重,只能保证数据的最终一致性,而不能保证强一致性(具体可参考官网说明:https://clickhouse.com/docs/zh/engines/table-engines/mergetree-family/replacingmergetree/)。

ClickHouse 数据一致性

查询CK手册发现,即便对数据一致性支持最好的Mergetree,也只是保证最终一致性:


我们在使用 ReplacingMergeTree、SummingMergeTree 这类表引擎的时候,会出现短暂数据不一致的情况。在某些对一致性非常敏感的场景,通常有以下几种解决方案。

1准备测试表和数据

1.1创建表

CREATE TABLE test_a(
  user_id UInt64,
  score String,
  deleted UInt8 DEFAULT 0,
  create_time DateTime DEFAULT toDateTime(0)
)ENGINE= ReplacingMergeTree(create_time)
ORDER BY user_id;

其中:

1.2 写入1000万测试数据

INSERT INTO TABLE test_a(user_id,score)
WITH(
  SELECT ['A','B','C','D','E','F','G']
)AS dict
SELECT number AS user_id, dict[number%7+1] FROM numbers(10000000);

1.3 修改前 50万 行数据,修改内容包括 name 字段和 create_time 版本号字段

INSERT INTO TABLE test_a(user_id,score,create_time)
WITH(
  SELECT ['AA','BB','CC','DD','EE','FF','GG']
)AS dict
SELECT number AS user_id, dict[number%7+1], now() AS create_time FROM numbers(500000);

1.4 统计总数

select count() test_a;

# 10500000条
# 还未触发分区合并,所以还未去重

2、手动OPTIMIZE(不推荐)

在写入数据后,立刻执行OPTIMIZE强制触发新写入分区的合并动作。生产环境不建议使用,使用 OPTIMIZE 会阻塞别人进行数据写入,性能开销大;

OPTIMIZE TABLE test_a FINAL;

语法:OPTIMIZE TABLE [db.]name [ON CLUSTER cluster] [PARTITION partition | PARTITION ID 'partition_id'] [FINAL] [DEDUPLICATE [BY expression]]

3 通过 Group by 去重

SELECT
  user_id ,
  argMax(score, create_time) AS score,
  argMax(deleted, create_time) AS deleted,
  max(create_time) AS ctime
FROM test_a
GROUP BY user_id
HAVING deleted = 0;

argMax(field1,field2):按照 field2 的最大值取 field1 的值,当我们更新数据时,会写入一行新的数据,例如上面语句中,通过查询最大的 create_time 得到修改后的score字段值。

CREATE VIEW view_test_a AS
SELECT
  user_id ,
  argMax(score, create_time) AS score,
  argMax(deleted, create_time) AS deleted,
  max(create_time) AS ctime
FROM test_a
GROUP BY user_id
HAVING deleted = 0;
#再次插入一条数据
INSERT INTO TABLE test_a(user_id,score,create_time) VALUES(0,'AAAA',now())
 
#再次查询
SELECT *
FROM view_test_a
WHERE user_id = 0;
#再次插入一条标记为删除的数据
INSERT INTO TABLE test_a(user_id,score,deleted,create_time) VALUES(0,'AAAA',1,now());

#再次查询,刚才那条数据看不到了
SELECT *
FROM view_test_a
WHERE user_id = 0;

这行数据并没有被真正的删除,而是被过滤掉了。在一些合适的场景下,可以结合 表级别的 TTL 最终将物理数据删除。

4 通过 FINAL 查询

在查询语句后增加FINAL修饰符,这样在查询的过程中将会执行Merge的特殊逻辑(例如数据去重,预聚合等)。

但是这种方法在早期版本基本没有人使用,因为在增加 FINAL之后,我们的查询将会变成一个单线程的执行过程,查询速度非常慢。

在v20.5.2.7-stable版本中,FINAL查询支持多线程执行,并且可以通过max_final_threads 参数控制单个查询的线程数。但是目前读取part部分的动作依然是串行的。

FINAL查询最终的性能和很多因素相关,列字段的大小、分区的数量等等都会影响到最终的查询时间,所以还要结合实际场景取舍。

参考链接:https://github.com/ClickHouse/ClickHouse/pull/10463 使用hits_v1表进行测试:

新版本测试

select *
from datasets.visits_v1
WHERE StartDate = '2014-03-17'
limit 100
settings
max_threads = 2;

查看执行计划:

explain pipeline
select *
from datasets.visits_v1
WHERE StartDate = '2014-03-17'
limit 100
settings
max_threads = 2; 

(Expression)
ExpressionTransform × 2
  (SettingQuotaAndLimits)
    (Limit)
    Limit 2 → 2
      (ReadFromMergeTree)
      MergeTreeThread × 2 0 → 1

明显将由2个线程并行读取 part 查询。

select *
from datasets.visits_v1 final
WHERE StartDate = '2014-03-17'
limit 100
settings
max_final_threads = 2;

查询速度没有普通的查询快,但是相比之前已经有了一些提升,查看 FINAL 查询的执行计划:

explain pipeline select * from datasets.visits_v1 final WHERE StartDate = '2014-03-17' limit 100  settings max_final_threads = 2;
(Expression)
ExpressionTransform × 2
  (SettingQuotaAndLimits)
    (Limit)
    Limit 2 → 2
      (ReadFromMergeTree)
      ExpressionTransform × 2
        CollapsingSortedTransform × 2
          Copy 1 → 2
            AddingSelector
              ExpressionTransform
                MergeTree 0 → 1

从CollapsingSortedTransform这一步开始已经是多线程执行,但是读取 part 部分的动作还是串行。

参考:
https://www.cnblogs.com/wdh01/p/16879841.html

https://blog.csdn.net/qq_40378034/article/details/120473116

https://blog.csdn.net/qq_38304392/article/details/125301713

上一篇下一篇

猜你喜欢

热点阅读