runloop
runloop概念
Run loops are part of the fundamental infrastructure associated with threads. A run loop is an event processing loop that you use to schedule work and coordinate the receipt of incoming events. The purpose of a run loop is to keep your thread busy when there is work to do and put your thread to sleep when there is none.
Run loops 是线程中一个基础的工具,一个run loop 就是一个监听事件和执行回调的死循环。它主要的作用:1.保持线程存活。2.有事就处理,没事就睡眠(挂起)
Run loop 默认情况下是停止的,在你创建线程时候要手动去配置监听事件和启动runloop,这样你的线程才能监听到事件并且产生回调。Cocoa和Core Foundation 框架都提供了配置和管理线程runloop的API(Cocoa中提供的是面向对象的,Core Foundation中提供的是C的API)。你应用的主线程是不需要手动去配置和启动runloop的,因为framewoks自动帮你完成了。对于二级子线程,则需要你手动去配置和启动。见NSRunLoop Class Reference 和 CFRunLoop Reference.
解析runloop
函数调用走了一遍就结束了</p>
<pre>
<code>int someFunc() {</code>
<code>// do something</code>
<code> return 0;</code>
<code>}</code>
</pre>
而在 RunLoop 中,要保持线程总是活着,能不断的处于“接受消息 –> 等待 –> 处理消息”的循环中,则大致逻辑如下
<pre>
<code>int runloop() {</code>
<code>do {</code>
<code> receive_message();</code>
<code>wait();</code>
<code>process_message();</code>
<code> } while (!quit);</code>
<code>return 0;</code>
}
</pre>
在 Xcode 的项目中,main 函数中调用的 UIApplicationMain 函数内部就启动了一个 RunLoop,保持程序的持续运行,而且这个默认启动的 RunLoop 的与主线程相关联的:
<pre>
<code>int main(int argc, char * argv[]) {</code>
<code>@autoreleasepool {</code>
<code> return UIApplicationMain(argc, argv, nil, NSStringFromClass([AppDelegate class]));</code>
}
}
<code>//添加一些代码</code>
<code>int main(int argc, char * argv[]) {</code>
<code> @autoreleasepool {</code>
<code>int result = UIApplicationMain(argc, argv, nil, NSStringFromClass([AppDelegate class]));</code>
<code> // 只要程序在运行,不会运行到下面这句</code>
<code> NSLog(@"after UIApplicationMain");</code>
<code> return result;</code>
}
}
</pre>
类家族
在 CoreFoundation 中关于 RunLoop 有 5 个类:
1.CFRunLoopRef
2.CFRunLoopModeRef
3.CFRunLoopSourceRef
4.CFRunLoopTimerRef
5.CFRunLoopObserverRef
<pre>
<code>// CFRunLoop.h</code>
<code>typedef struct CF_BRIDGED_MUTABLE_TYPE(id) __CFRunLoop * </code>CFRunLoopRef;</code>
<code>typedef struct CF_BRIDGED_MUTABLE_TYPE(id) __CFRunLoopSource * CFRunLoopSourceRef;</code>
<code>typedef struct CF_BRIDGED_MUTABLE_TYPE(id) __CFRunLoopObserver * CFRunLoopObserverRef;</code>
<code>typedef struct CF_BRIDGED_MUTABLE_TYPE(NSTimer) __CFRunLoopTimer * CFRunLoopTimerRef;</code>
<code>// CFRunLoop.c</code>
<code>struct __CFRunLoop {</code>
<code> pthread_t _pthread;</code>
<code> CFMutableSetRef _commonModes;</code>
<code> CFRunLoopModeRef _currentMode;</code>
...
};
<code>struct __CFRunLoopMode {</code>
<code>CFMutableSetRef _sources0;</code>
<code>CFMutableSetRef _sources1;</code>
<code> CFMutableArrayRef _observers;</code>
<code>CFMutableArrayRef _timers;</code>
...
};
</pre>
所以一个 RunLoop 对应一条线程,可以包含若干个 mode,但一个时刻只能在一个 mode 上运行(即 currentMode),要切换 mode 只能退出 loop 再指定一个 mode 后重新进入。每个 mode 可以包含若干个 source/timer/observer,不同组之间的互不影响。这 5 个类的关系大致如下:
CFRunLoopModeRef
struct __CFRunLoopMode {
CFStringRef _name; // Mode Name, 例如 @"kCFRunLoopDefaultMode"
CFMutableSetRef _sources0; // Set
CFMutableSetRef _sources1; // Set
CFMutableArrayRef _observers; // Array
CFMutableArrayRef _timers; // Array
...
};
struct __CFRunLoop {
CFMutableSetRef _commonModes; // Set
CFMutableSetRef _commonModeItems; // Set<Source/Observer/Timer>
CFRunLoopModeRef _currentMode; // Current Runloop Mode
CFMutableSetRef _modes; // Set
...
};
一个 run loop mode 是若干个 source、timer 和 observer 的集合,它能帮我们过滤掉一些不想要的事件。即一个 RunLoop 在某个 mode 下运行时,不会接收和处理其他 mode 的事件 。要保持一个 mode 活着,就必须往里面添加至少一个 source、timer 或 observer 。
苹果公开的 mode 有两个:kCFRunLoopDefaultMode (NSDefaultRunLoopMode) 和 UITrackingRunLoopMode。前者是默认的模式,程序运行的大多时候都处于该 mode 下,后者是滑动 tableView 等时为了界面流畅而用的 mode。还有个 UIInitializationRunLoopMode 是程序启动时进入的 mode,一般用不上。
CFRunLoop 还定义了一个伪 mode 叫 kCFRunLoopCommonModes,它不是一个真正的 mode,而是若干个 mode 的集合,加到 CommonMode 的 source/timer/observer 相当于添加到了它里面所有的 mode 中。我们可以通过 NSLog(@"%@", [NSRunLoop currentRunLoop]) 从打印结果看到 CommonMode 包含了上面的 DefaultMode 和 TrackingRunLoopMode:
CFRunLoopSourceRef
source 只有两个版本:source0 和 source1,它们的区别在于它们是怎么被标记 (signal) 的。source0 是 app 内部的消息机制,使用时需要调用 CFRunLoopSourceSignal()来把这个 source 标记为待处理,然后掉用 CFRunLoopWakeUp() 来唤醒 RunLoop,让其处理这个事件。
source by apple
<pre><code>void CFRunLoopSourceSignal(CFRunLoopSourceRef rls) {</code>
<code>if (__CFIsValid(rls)) {</code>
<code> __CFRunLoopSourceSetSignaled(rls);</code>
}
}
<code>void CFRunLoopWakeUp(CFRunLoopRef rl) {</code>
<code> if (__CFRunLoopIsIgnoringWakeUps(rl)) {</code>
return;
}
<code>SetEvent(rl->_wakeUpPort);</code>
}</pre>
自己在 touchesBegan... 方法中打断点,点击屏幕可以看到调用栈是这样的:
调用栈
其他类似的还有下面几个,它们都只是帮助我们在调用栈上调试,确保所有的代码调用都从这几种函数中的某一个开始的:
<pre>
<code>static void CFRUNLOOP_IS_CALLING_OUT_TO_AN_OBSERVER_CALLBACK_FUNCTION();</code>
<code>static void CFRUNLOOP_IS_CALLING_OUT_TO_A_BLOCK();</code>
<code>static void CFRUNLOOP_IS_SERVICING_THE_MAIN_DISPATCH_QUEUE();</code>
<code>static void CFRUNLOOP_IS_CALLING_OUT_TO_A_TIMER_CALLBACK_FUNCTION();</code>
<code>static void CFRUNLOOP_IS_CALLING_OUT_TO_A_SOURCE1_PERFORM_FUNCTION();</code>
</pre>
source1 是基于 mach_ports 的,用于通过内核和其他线程互相发送消息。iOS / OSX 都是基于 Mach 内核,Mach 的对象间的通信是通过消息在两个端口(port)之间传递来完成。很多时候我们的 app 都是处于什么事都不干的状态,在空闲前指定用于唤醒的 mach port 端口,然后在空闲时被 mach_msg() 函数阻塞着并监听唤醒端口, mach_msg() 又会调用 mach_msg_trap() 函数从用户态切换到内核态,这样系统内核就将这个线程挂起,一直停留在 mac_msg_trap 状态。直到另一个线程向内核发送这个端口的 msg 后, trap 状态被唤醒, RunLoop 继续开始干活
当程序在运行但又空闲的时候,我们可以暂停它,可以看到此时的调用栈是这样的:
runloop内部逻辑
内部逻辑void CFRunLoopRun(void) {
CFRunLoopRunSpecific(CFRunLoopGetCurrent(), kCFRunLoopDefaultMode, 1.0e10, false);
}</code>
/// 用指定的Mode启动,允许设置RunLoop超时时间
int CFRunLoopRunInMode(CFStringRef modeName, CFTimeInterval seconds, Boolean stopAfterHandle) {
return CFRunLoopRunSpecific(CFRunLoopGetCurrent(), modeName, seconds, returnAfterSourceHandled);
}
/// RunLoop的实现
int CFRunLoopRunSpecific(runloop, modeName, seconds, stopAfterHandle) {
/// 首先根据modeName找到对应mode
CFRunLoopModeRef currentMode = __CFRunLoopFindMode(runloop, modeName, false);
/// 如果mode里没有source/timer/observer, 直接返回。
if (__CFRunLoopModeIsEmpty(currentMode)) return;
/// 1. 通知 Observers: RunLoop 即将进入 loop。
__CFRunLoopDoObservers(runloop, currentMode, kCFRunLoopEntry);
/// 内部函数,进入loop
__CFRunLoopRun(runloop, currentMode, seconds, returnAfterSourceHandled) {
Boolean sourceHandledThisLoop = NO;
int retVal = 0;
do {
/// 2. 通知 Observers: RunLoop 即将触发 Timer 回调。
__CFRunLoopDoObservers(runloop, currentMode, kCFRunLoopBeforeTimers);
/// 3. 通知 Observers: RunLoop 即将触发 Source0 (非port) 回调。
__CFRunLoopDoObservers(runloop, currentMode, kCFRunLoopBeforeSources);
/// 执行被加入的block
__CFRunLoopDoBlocks(runloop, currentMode);
/// 4. RunLoop 触发 Source0 (非port) 回调。
sourceHandledThisLoop = __CFRunLoopDoSources0(runloop, currentMode, stopAfterHandle);
/// 执行被加入的block
__CFRunLoopDoBlocks(runloop, currentMode);
/// 5. 如果有 Source1 (基于port) 处于 ready 状态,直接处理这个 Source1 然后跳转去处理消息。
if (__Source0DidDispatchPortLastTime) {
Boolean hasMsg = __CFRunLoopServiceMachPort(dispatchPort, &msg)
if (hasMsg) goto handle_msg;
}
/// 通知 Observers: RunLoop 的线程即将进入休眠(sleep)。
if (!sourceHandledThisLoop) {
__CFRunLoopDoObservers(runloop, currentMode, kCFRunLoopBeforeWaiting);
}
/// 7. 调用 mach_msg 等待接受 mach_port 的消息。线程将进入休眠, 直到被下面某一个事件唤醒。
/// • 一个基于 port 的Source 的事件。
/// • 一个 Timer 到时间了
/// • RunLoop 自身的超时时间到了
/// • 被其他什么调用者手动唤醒
__CFRunLoopServiceMachPort(waitSet, &msg, sizeof(msg_buffer), &livePort) {
mach_msg(msg, MACH_RCV_MSG, port); // thread wait for receive msg
}
/// 8. 通知 Observers: RunLoop 的线程刚刚被唤醒了。
__CFRunLoopDoObservers(runloop, currentMode, kCFRunLoopAfterWaiting);
/// 收到消息,处理消息。
handle_msg:
/// 9.1 如果一个 Timer 到时间了,触发这个Timer的回调。
if (msg_is_timer) {
__CFRunLoopDoTimers(runloop, currentMode, mach_absolute_time())
}
/// 9.2 如果有dispatch到main_queue的block,执行block。
else if (msg_is_dispatch) {
__CFRUNLOOP_IS_SERVICING_THE_MAIN_DISPATCH_QUEUE__(msg);
}
/// 9.3 如果一个 Source1 (基于port) 发出事件了,处理这个事件
else {
CFRunLoopSourceRef source1 = __CFRunLoopModeFindSourceForMachPort(runloop, currentMode, livePort);
sourceHandledThisLoop = __CFRunLoopDoSource1(runloop, currentMode, source1, msg);
if (sourceHandledThisLoop) {
mach_msg(reply, MACH_SEND_MSG, reply);
}
}
/// 执行加入到Loop的block
__CFRunLoopDoBlocks(runloop, currentMode);
if (sourceHandledThisLoop && stopAfterHandle) {
/// 进入loop时参数说处理完事件就返回。
retVal = kCFRunLoopRunHandledSource;
} else if (timeout) {
/// 超出传入参数标记的超时时间了
retVal = kCFRunLoopRunTimedOut;
} else if (__CFRunLoopIsStopped(runloop)) {
/// 被外部调用者强制停止了
retVal = kCFRunLoopRunStopped;
} else if (__CFRunLoopModeIsEmpty(runloop, currentMode)) {
/// source/timer/observer一个都没有了
retVal = kCFRunLoopRunFinished;
}
/// 如果没超时,mode里没空,loop也没被停止,那继续loop。
} while (retVal == 0);
}
/// 10. 通知 Observers: RunLoop 即将退出。
__CFRunLoopDoObservers(rl, currentMode, kCFRunLoopExit);
}
RunLoop 的底层实现
从上面代码可以看到,RunLoop 的核心是基于 mach port 的,其进入休眠时调用的函数是 mach_msg()。为了解释这个逻辑,下面稍微介绍一下 OSX/iOS 的系统架构。
RunLoop_3苹果官方将整个系统大致划分为上述4个层次:应用层包括用户能接触到的图形应用,例如 Spotlight、Aqua、SpringBoard 等。应用框架层即开发人员接触到的 Cocoa 等框架。核心框架层包括各种核心框架、OpenGL 等内容。Darwin 即操作系统的核心,包括系统内核、驱动、Shell 等内容,这一层是开源的,其所有源码都可以在 opensource.apple.com 里找到。
我们在深入看一下 Darwin 这个核心的架构: RunLoop_4
其中,在硬件层上面的三个组成部分:Mach、BSD、IOKit (还包括一些上面没标注的内容),共同组成了 XNU 内核。XNU 内核的内环被称作 Mach,其作为一个微内核,仅提供了诸如处理器调度、IPC (进程间通信)等非常少量的基础服务。BSD 层可以看作围绕 Mach 层的一个外环,其提供了诸如进程管理、文件系统和网络等功能。IOKit 层是为设备驱动提供了一个面向对象(C++)的一个框架。
Mach 本身提供的 API 非常有限,而且苹果也不鼓励使用 Mach 的 API,但是这些API非常基础,如果没有这些API的话,其他任何工作都无法实施。在 Mach 中,所有的东西都是通过自己的对象实现的,进程、线程和虚拟内存都被称为"对象"。和其他架构不同, Mach 的对象间不能直接调用,只能通过消息传递的方式实现对象间的通信。"消息"是 Mach 中最基础的概念,消息在两个端口 (port) 之间传递,这就是 Mach 的 IPC (进程间通信) 的核心。
Mach 的消息定义是在 <mach/message.h> 头文件的,很简单:
typedef struct {
mach_msg_header_t header;
mach_msg_body_t body;
} mach_msg_base_t;
typedef struct {
mach_msg_bits_t msgh_bits;
mach_msg_size_t msgh_size;
mach_port_t msgh_remote_port;
mach_port_t msgh_local_port;
mach_port_name_t msgh_voucher_port;
mach_msg_id_t msgh_id;
} mach_msg_header_t;
一条 Mach 消息实际上就是一个二进制数据包 (BLOB),其头部定义了当前端口 local_port 和目标端口 remote_port,发送和接受消息是通过同一个 API 进行的,其 option 标记了消息传递的方向:
mach_msg_return_t mach_msg(
mach_msg_header_t *msg,
mach_msg_option_t option,
mach_msg_size_t send_size,
mach_msg_size_t rcv_size,
mach_port_name_t rcv_name,
mach_msg_timeout_t timeout,
mach_port_name_t notify);
为了实现消息的发送和接收,mach_msg() 函数实际上是调用了一个 Mach 陷阱 (trap),即函数mach_msg_trap(),陷阱这个概念在 Mach 中等同于系统调用。当你在用户态调用 mach_msg_trap() 时会触发陷阱机制,切换到内核态;内核态中内核实现的 mach_msg() 函数会完成实际的工作,如下图:
RunLoop_5这些概念可以参考维基百科: System_call、Trap_(computing)。
RunLoop 的核心就是一个 mach_msg() (见上面代码的第7步),RunLoop 调用这个函数去接收消息,如果没有别人发送 port 消息过来,内核会将线程置于等待状态。例如你在模拟器里跑起一个 iOS 的 App,然后在 App 静止时点击暂停,你会看到主线程调用栈是停留在 mach_msg_trap() 这个地方。
关于具体的如何利用 mach port 发送信息,可以看看 NSHipster 这一篇文章,或者这里的中文翻译 。
关于Mach的历史可以看看这篇很有趣的文章:Mac OS X 背后的故事(三)Mach 之父 Avie Tevanian。
苹果用 RunLoop 实现的功能
首先我们可以看一下 App 启动后 RunLoop 的状态:
CFRunLoop {
current mode = kCFRunLoopDefaultMode
common modes = {
UITrackingRunLoopMode
kCFRunLoopDefaultMode
}
common mode items = {
// source0 (manual)
CFRunLoopSource {order =-1, {
callout = _UIApplicationHandleEventQueue}}
CFRunLoopSource {order =-1, {
callout = PurpleEventSignalCallback }}
CFRunLoopSource {order = 0, {
callout = FBSSerialQueueRunLoopSourceHandler}}
// source1 (mach port)
CFRunLoopSource {order = 0, {port = 17923}}
CFRunLoopSource {order = 0, {port = 12039}}
CFRunLoopSource {order = 0, {port = 16647}}
CFRunLoopSource {order =-1, {
callout = PurpleEventCallback}}
CFRunLoopSource {order = 0, {port = 2407,
callout = _ZL20notify_port_callbackP12__CFMachPortPvlS1_}}
CFRunLoopSource {order = 0, {port = 1c03,
callout = __IOHIDEventSystemClientAvailabilityCallback}}
CFRunLoopSource {order = 0, {port = 1b03,
callout = __IOHIDEventSystemClientQueueCallback}}
CFRunLoopSource {order = 1, {port = 1903,
callout = __IOMIGMachPortPortCallback}}
// Ovserver
CFRunLoopObserver {order = -2147483647, activities = 0x1, // Entry
callout = _wrapRunLoopWithAutoreleasePoolHandler}
CFRunLoopObserver {order = 0, activities = 0x20, // BeforeWaiting
callout = _UIGestureRecognizerUpdateObserver}
CFRunLoopObserver {order = 1999000, activities = 0xa0, // BeforeWaiting | Exit
callout = _afterCACommitHandler}
CFRunLoopObserver {order = 2000000, activities = 0xa0, // BeforeWaiting | Exit
callout = _ZN2CA11Transaction17observer_callbackEP19__CFRunLoopObservermPv}
CFRunLoopObserver {order = 2147483647, activities = 0xa0, // BeforeWaiting | Exit
callout = _wrapRunLoopWithAutoreleasePoolHandler}
// Timer
CFRunLoopTimer {firing = No, interval = 3.1536e+09, tolerance = 0,
next fire date = 453098071 (-4421.76019 @ 96223387169499),
callout = _ZN2CAL14timer_callbackEP16__CFRunLoopTimerPv (QuartzCore.framework)}
},
modes = {
CFRunLoopMode {
sources0 = { /* same as 'common mode items' */ },
sources1 = { /* same as 'common mode items' */ },
observers = { /* same as 'common mode items' */ },
timers = { /* same as 'common mode items' */ },
},
CFRunLoopMode {
sources0 = { /* same as 'common mode items' */ },
sources1 = { /* same as 'common mode items' */ },
observers = { /* same as 'common mode items' */ },
timers = { /* same as 'common mode items' */ },
},
CFRunLoopMode {
sources0 = {
CFRunLoopSource {order = 0, {
callout = FBSSerialQueueRunLoopSourceHandler}}
},
sources1 = (null),
observers = {
CFRunLoopObserver >{activities = 0xa0, order = 2000000,
callout = _ZN2CA11Transaction17observer_callbackEP19__CFRunLoopObservermPv}
)},
timers = (null),
},
CFRunLoopMode {
sources0 = {
CFRunLoopSource {order = -1, {
callout = PurpleEventSignalCallback}}
},
sources1 = {
CFRunLoopSource {order = -1, {
callout = PurpleEventCallback}}
},
observers = (null),
timers = (null),
},
CFRunLoopMode {
sources0 = (null),
sources1 = (null),
observers = (null),
timers = (null),
}
}
}
可以看到,系统默认注册了5个Mode:1. kCFRunLoopDefaultMode: App的默认 Mode,通常主线程是在这个 Mode 下运行的。2. UITrackingRunLoopMode: 界面跟踪 Mode,用于 ScrollView 追踪触摸滑动,保证界面滑动时不受其他 Mode 影响。3. UIInitializationRunLoopMode: 在刚启动 App 时第进入的第一个 Mode,启动完成后就不再使用。4: GSEventReceiveRunLoopMode: 接受系统事件的内部 Mode,通常用不到。5: kCFRunLoopCommonModes: 这是一个占位的 Mode,没有实际作用。
你可以在这里看到更多的苹果内部的 Mode,但那些 Mode 在开发中就很难遇到了。
当 RunLoop 进行回调时,一般都是通过一个很长的函数调用出去 (call out), 当你在你的代码中下断点调试时,通常能在调用栈上看到这些函数。下面是这几个函数的整理版本,如果你在调用栈中看到这些长函数名,在这里查找一下就能定位到具体的调用地点了:
{
/// 1. 通知Observers,即将进入RunLoop
/// 此处有Observer会创建AutoreleasePool: _objc_autoreleasePoolPush();
__CFRUNLOOP_IS_CALLING_OUT_TO_AN_OBSERVER_CALLBACK_FUNCTION__(kCFRunLoopEntry);
do {
/// 2. 通知 Observers: 即将触发 Timer 回调。
__CFRUNLOOP_IS_CALLING_OUT_TO_AN_OBSERVER_CALLBACK_FUNCTION__(kCFRunLoopBeforeTimers);
/// 3. 通知 Observers: 即将触发 Source (非基于port的,Source0) 回调。
__CFRUNLOOP_IS_CALLING_OUT_TO_AN_OBSERVER_CALLBACK_FUNCTION__(kCFRunLoopBeforeSources);
__CFRUNLOOP_IS_CALLING_OUT_TO_A_BLOCK__(block);
/// 4. 触发 Source0 (非基于port的) 回调。
__CFRUNLOOP_IS_CALLING_OUT_TO_A_SOURCE0_PERFORM_FUNCTION__(source0);
__CFRUNLOOP_IS_CALLING_OUT_TO_A_BLOCK__(block);
/// 6. 通知Observers,即将进入休眠
/// 此处有Observer释放并新建AutoreleasePool: _objc_autoreleasePoolPop(); _objc_autoreleasePoolPush();
__CFRUNLOOP_IS_CALLING_OUT_TO_AN_OBSERVER_CALLBACK_FUNCTION__(kCFRunLoopBeforeWaiting);
/// 7. sleep to wait msg.
mach_msg() -> mach_msg_trap();
/// 8. 通知Observers,线程被唤醒
__CFRUNLOOP_IS_CALLING_OUT_TO_AN_OBSERVER_CALLBACK_FUNCTION__(kCFRunLoopAfterWaiting);
/// 9. 如果是被Timer唤醒的,回调Timer
__CFRUNLOOP_IS_CALLING_OUT_TO_A_TIMER_CALLBACK_FUNCTION__(timer);
/// 9. 如果是被dispatch唤醒的,执行所有调用 dispatch_async 等方法放入main queue 的 block
__CFRUNLOOP_IS_SERVICING_THE_MAIN_DISPATCH_QUEUE__(dispatched_block);
/// 9. 如果如果Runloop是被 Source1 (基于port的) 的事件唤醒了,处理这个事件
__CFRUNLOOP_IS_CALLING_OUT_TO_A_SOURCE1_PERFORM_FUNCTION__(source1);
} while (...);
/// 10. 通知Observers,即将退出RunLoop
/// 此处有Observer释放AutoreleasePool: _objc_autoreleasePoolPop();
__CFRUNLOOP_IS_CALLING_OUT_TO_AN_OBSERVER_CALLBACK_FUNCTION__(kCFRunLoopExit);
}
AutoreleasePool
App启动后,苹果在主线程 RunLoop 里注册了两个 Observer,其回调都是 _wrapRunLoopWithAutoreleasePoolHandler()。
第一个 Observer 监视的事件是 Entry(即将进入Loop),其回调内会调用 _objc_autoreleasePoolPush() 创建自动释放池。其 order 是-2147483647,优先级最高,保证创建释放池发生在其他所有回调之前。
第二个 Observer 监视了两个事件: BeforeWaiting(准备进入休眠) 时调用_objc_autoreleasePoolPop() 和 _objc_autoreleasePoolPush() 释放旧的池并创建新池;Exit(即将退出Loop) 时调用 _objc_autoreleasePoolPop() 来释放自动释放池。这个 Observer 的 order 是 2147483647,优先级最低,保证其释放池子发生在其他所有回调之后。
在主线程执行的代码,通常是写在诸如事件回调、Timer回调内的。这些回调会被 RunLoop 创建好的 AutoreleasePool 环绕着,所以不会出现内存泄漏,开发者也不必显示创建 Pool 了。
事件响应
苹果注册了一个 Source1 (基于 mach port 的) 用来接收系统事件,其回调函数为 __IOHIDEventSystemClientQueueCallback()。
当一个硬件事件(触摸/锁屏/摇晃等)发生后,首先由 IOKit.framework 生成一个 IOHIDEvent 事件并由 SpringBoard 接收。这个过程的详细情况可以参考这里。SpringBoard 只接收按键(锁屏/静音等),触摸,加速,接近传感器等几种 Event,随后用 mach port 转发给需要的App进程。随后苹果注册的那个 Source1 就会触发回调,并调用 _UIApplicationHandleEventQueue() 进行应用内部的分发。
_UIApplicationHandleEventQueue() 会把 IOHIDEvent 处理并包装成 UIEvent 进行处理或分发,其中包括识别 UIGesture/处理屏幕旋转/发送给 UIWindow 等。通常事件比如 UIButton 点击、touchesBegin/Move/End/Cancel 事件都是在这个回调中完成的。
手势识别
当上面的 _UIApplicationHandleEventQueue() 识别了一个手势时,其首先会调用 Cancel 将当前的 touchesBegin/Move/End 系列回调打断。随后系统将对应的 UIGestureRecognizer 标记为待处理。
苹果注册了一个 Observer 监测 BeforeWaiting (Loop即将进入休眠) 事件,这个Observer的回调函数是 _UIGestureRecognizerUpdateObserver(),其内部会获取所有刚被标记为待处理的 GestureRecognizer,并执行GestureRecognizer的回调。
当有 UIGestureRecognizer 的变化(创建/销毁/状态改变)时,这个回调都会进行相应处理。
界面更新
当在操作 UI 时,比如改变了 Frame、更新了 UIView/CALayer 的层次时,或者手动调用了 UIView/CALayer 的 setNeedsLayout/setNeedsDisplay方法后,这个 UIView/CALayer 就被标记为待处理,并被提交到一个全局的容器去。
苹果注册了一个 Observer 监听 BeforeWaiting(即将进入休眠) 和 Exit (即将退出Loop) 事件,回调去执行一个很长的函数:_ZN2CA11Transaction17observer_callbackEP19__CFRunLoopObservermPv()。这个函数里会遍历所有待处理的 UIView/CAlayer 以执行实际的绘制和调整,并更新 UI 界面。
下期预告:
alibaba-Beehive开源框架源码分析,其中涉及到编译连接阶段的黑魔法技术和模块话解耦合。
参考:
CFRunLoop.c
官方文档
深入理解RunLoop
视频: iOS线下分享《RunLoop》by 孙源@sunnyxx
Run, RunLoop, Run!
Understanding NSRunLoop