RGB-D Semantic Segmentation 结果

2019-03-26  本文已影响0人  挺老实

结果汇总:

数据库 SUN RGB-D NYU V1 NYU V2
方法 Pixel Mean mIoU Pixel Mean mIoU Pixel Mean mIoU f.w. Iou 期刊 时间 备注
RedNet[1] 81.3 % 60.3% 47.8% - - - - - - arxiv 2018
Multimodal-RNNs[2] - - - 78.89% 75.73% 65.70% 67.90% 54.67% 43.27% arxiv 2018
S-M Fusion[3] 78.07% 53.93% 40.98% - - - - - - ICIP 2018
LSDNGF[4] - - - - - - 71.9% 60.7% 45.9% 59.3 % cvpr 2017

参考文献


  1. Residual Encoder-Decoder Network for indoor RGB-D Semantic Segmentation, https://arxiv.org/abs/1806.01054

  2. Multimodal Recurrent Neural Networks with Information Transfer Layers for Indoor Scene Labeling, https://arxiv.org/abs/1803.04687

  3. SEMANTICS-GUIDED MULTI-LEVEL RGB-D FEATURE FUSION FOR INDOOR SEMANTIC,https://ieeexplore.ieee.org/iel7/8267582/8296222/08296484.pdf

  4. Locality-Sensitive Deconvolution Networks with Gated Fusion for RGB-D Indoor Semantic Segmentation,http://openaccess.thecvf.com/content_cvpr_2017/papers/Cheng_Locality-Sensitive_Deconvolution_Networks_CVPR_2017_paper.pdf

上一篇 下一篇

猜你喜欢

热点阅读