奥数自学研究

高中奥数 2022-03-08

2022-03-08  本文已影响0人  不为竞赛学奥数

2022-03-08-01

(来源: 数学奥林匹克小丛书 第二版 高中卷 不等式的解题方法与技巧 苏勇 熊斌 证明不等式的基本方法 P032 例4)

实数集\left\{a_{0},a_{1},\cdots ,a_{n}\right\}满足以下条件:

(1)a_{0}=a_{n}=0;

(2)对1\leqslant k\leqslant n-1,a_{k}=c+\sum\limits_{i=k}^{n-1}a_{i-k}\left(a_{i}+a_{i+1}\right).

求证:c\leqslant \dfrac{1}{4n}.

证明

s_{k}=\sum\limits{i=0}^{k}a_{i},k=1,2,\cdots ,n,

s_{n}=\sum\limits_{k=0}^{n}a_{k}=\sum\limits_{k=0}^{n-1}a_{k}=nc++\sum\limits_{k=0}^{n-1}\sum\limits_{i=k}^{n-1}a_{i-k}\left(a_{i}+a_{i+1}\right).
补充定义a_{-1}=a_{-2}=\cdots=a_{-\left(n-1\right)}=0,


\begin{aligned} s_{n}&=nc+\sum\limits_{k=0}^{n-1}\sum\limits_{i=0}^{n-1}a_{i-k}\left(a_{i}+a_{i+1}\right)\\ &=nc+\sum\limits_{i=0}^{n-1}\sum\limits_{k=0}^{n-1}a_{i-k}\left(a_{i}+a_{i+1}\right)\\ &=nc+\sum\limits_{i=0}^{n-1}\sum\limits_{k=0}^{i}a_{i-k}\left(a_{i}+a_{i+1}\right)\\ &=nc+\sum\limits_{i=0}^{n-1}\left(a_{i}+a_{i+1}\right)\sum\limits_{k=0}^{i}a_{i-k}\\ &=nc+\sum\limits_{i=0}^{n-1}\left(a_{i}+a_{i+1}\right)\cdot s_{n}\\ &=nc+s_{1}s_{0}+\left(s_{2}-s_{0}\right)s_{1}+\left(s_{3}-s_{1}\right)s_{2}+\cdots+\left(s_{n-1}-s_{n-3}\right)s_{n-2}+\left(s_{n}-s_{n-2}\right)s_{n-1}\\ &=nc+s_{n}s_{n-1}\\ &=nc+s_{n}^{2}, \end{aligned}
s_{n}^{2}-s_{n}+nc=0.

\Delta =1-4nc\geqslant 0即知c\leqslant \dfrac{1}{4n}.

2022-03-08-02

(来源: 数学奥林匹克小丛书 第二版 高中卷 不等式的解题方法与技巧 苏勇 熊斌 证明不等式的基本方法 P033 例5)

a_{n}=1+\dfrac{1}{2}+\cdots +\dfrac{1}{n},n\in \mathbb{N}_{+}.求证:对n\geqslant 2,有
a_{n}^{2}>2\left(\dfrac{a_{2}}{2}+\dfrac{a_{3}}{3}+\cdots +\dfrac{a_{n}}{n}\right).

分析若直接通过a_{n}的表达式来证将非常复杂,但通过建立其递推公式,可以使问题很容易得到解决,我们便可从此处入手.

证明

\begin{aligned} a_{n}^{2}-a_{n-1}^{2} &=\left(1+\dfrac{1}{2}+\cdots+\dfrac{1}{n}\right)^{2}-\left(1+\dfrac{1}{2}+\cdots+\dfrac{1}{n-1}\right)^{2} \\ &=\dfrac{1}{n^{2}}+2 \cdot \dfrac{1}{n}\left(1+\dfrac{1}{2}+\cdots+\dfrac{1}{n-1}\right) \\ &=\dfrac{1}{n^{2}}+\dfrac{2}{n}\left(a_{n}-\dfrac{1}{n}\right) \\ &=2 \cdot \dfrac{a_{n}}{n}-\dfrac{1}{n^{2}}. \end{aligned}
a_{n}^{2}-a_{1}^{2}=2\left(\dfrac{a_{2}}{2}+\dfrac{a_{3}}{3}+\cdots +\dfrac{a_{n}}{n}\right)-\left(\dfrac{1}{2^{2}}+\dfrac{1}{3^{2}}+\cdots +\dfrac{1}{n^{2}}\right).

所以
\begin{aligned} a_{n}^{2}&=2\left(\dfrac{a_{2}}{2}+\dfrac{a_{3}}{3}+\cdots +\dfrac{a_{n}}{n}\right)+\left(1-\dfrac{1}{2^{2}}- \cdots -\dfrac{1}{n^{2}}\right)\\ &>2\left(\dfrac{a_{2}}{2}+\dfrac{a_{3}}{3}+\cdots +\dfrac{a_{n}}{n}\right)+\left(1-\dfrac{1}{1\times 2}-\dfrac{1}{2\times 3}-\cdots -\dfrac{1}{\left(n-1\right)n}\right)\\ &=2\left(\dfrac{a_{2}}{2}+\dfrac{a_{3}}{3}+\cdots +\dfrac{a_{n}}{n}\right)+\dfrac{1}{n}\\ &>2\left(\dfrac{a_{2}}{2}+\dfrac{a_{3}}{3}+\cdots +\dfrac{a_{n}}{n}\right). \end{aligned}
故原不等式成立.

说明本题也可以用数学归纳法证明加强的命题:
a_n^{2}>2\left(\dfrac{a_{2}}{2}+\dfrac{a_{3}}{3}+\cdots +\dfrac{a_{n}}{n}\right)+\dfrac{1}{n}.

2022-03-08-03

(来源: 数学奥林匹克小丛书 第二版 高中卷 不等式的解题方法与技巧 苏勇 熊斌 证明不等式的基本方法 P034 例6)

设数列\left\{a_{k}\right\}满足:a_{k+1}=a_{k}+f\left(n\right)\cdot a_{k}^{2},0\leqslant k\leqslant n.其中0<a_{0}<1,0<f\left(n\right)\leqslant \dfrac{1}{n}\left(\dfrac{1}{a_{0}}-1\right).求证:
\dfrac{a_{0}\left(1+f\left(n\right)\right)}{1+\left(1-a_{0}p\right)f\left(n\right)}\leqslant a_{p}\leqslant \dfrac{a_{0}}{1-a_{0}pf\left(n\right)}\left(0\leqslant p\leqslant n\right),\qquad(*)
等号成立当且仅当p=0.

证明

p=0时,(*)式两边等号成立.

p\geqslant 1时,由a_{0}>0,f\left(n\right)>0,易知a_{p}>0\left(1\leqslant p\leqslant n\right),于是
a_{k+1}=a_{k}+f\left(n\right)a_{k}^{2}>a_{k}\left(0\leqslant k\leqslant n\right),
a_{k+1}=a_{k}+f\left(n\right)a_{k}^{2}<a_{k}+f\left(n\right)a_{k}a_{k+1}.

所以\dfrac{1}{a_{k}}-\dfrac{1}{a_{k+1}}<f\left(n\right).

因此\sum\limits_{k=0}^{p-1}\left(\dfrac{1}{a_{k}}-\dfrac{1}{a_{k+1}}\right)<pf\left(n\right),p=1,2\cdots,n,

\dfrac{1}{a_{0}}-\dfrac{1}{a_{p}}<pf\left(n\right).

\dfrac{1}{a_{p}}>\dfrac{1}{a_{0}}-pf\left(n\right)\geqslant \dfrac{1}{a_{0}}-p\cdot \dfrac{1}{n}\left(\dfrac{1}{a_{0}}-1\right)\geqslant 1,

于是a_{p}<\dfrac{1}{\dfrac{1}{a_{0}}-pf\left(n\right)}=\dfrac{a_{0}}{1-a_{0}Pf\left(n\right)}\leqslant 1\left(1\leqslant p\leqslant n\right).

另一方面,由a_{p}^{2}<a_{p}<1,有
a_{k+1}<a_{k}+f\left(n\right)\cdot a_{k},
a_{k}>\dfrac{1}{1+f\left(n\right)}a_{k+1},

a_{k+1}>a_{k}+f\left(n\right)\dfrac{a_{k}\cdot a_{k+1}}{1+f\left(n\right)},

\dfrac{1}{a_{k}}-\dfrac{1}{a_{k+1}}>\dfrac{f\left(n\right)}{1+f\left(n\right)},

于是\sum\limits_{k=0}^{p-1}\left(\dfrac{1}{a_{k}}-\dfrac{1}{a_{k+1}}\right)>p\cdot \dfrac{f\left(n\right)}{1+f\left(n\right)}\left(1\leqslant p\leqslant n\right),

\dfrac{1}{a_{0}}-\dfrac{1}{a_{p}}>p\cdot \dfrac{f\left(n\right)}{1+f\left(n\right)},

也即\dfrac{1}{a_{p}}<\dfrac{1}{a_{0}}-\dfrac{p\cdot f\left(n\right)}{1+f\left(n\right)}=\dfrac{1+\left(1-a_{0}p\right)f\left(n\right)}{a_{0}\left(1+f\left(n\right)\right)},

所以a_{p}>\dfrac{a_{0}\left(l+f\left(n\right)\right)}{1+\left(1-a_{0}p\right)f\left(n\right)}\left(1\leqslant p\leqslant n\right).

综合两方面情况,命题得证.

2022-03-08-04

(来源: 数学奥林匹克小丛书 第二版 高中卷 不等式的解题方法与技巧 苏勇 熊斌 证明不等式的基本方法 P035 例7)

(钟开莱不等式)设a_{1}\geqslant a_{2}\geqslant \cdots \geqslant a_{n}>0,且\sum\limits_{i=1}^{k}{a_{i}}\leqslant \sum\limits_{i=1}^{k}b_{i}\left(1\leqslant k\leqslant n\right),则

(1)\sum\limits_{i=1}^{n}a_{i}^{2}\leqslant\sum\limits_{i=1}^{n}b_{i}^{2};

(2)\sum\limits_{i=1}^{n}a_{i}^{3}\leqslant\sum\limits_{i=1}^{n}a_{i}b_{i}^{2}.

证明

(1)由Abel变换公式,
\begin{aligned} \sum\limits_{i=1}^{n} a_{i}^{2} &=a_{n}\left(\sum\limits_{i=1}^{n} a_{i}\right)+\sum\limits_{k=1}^{n-1}\left(\sum\limits_{i=1}^{k} a_{i}\right)\left(a_{k}-a_{k+1}\right) \\ & \leqslant a_{n}\left(\sum\limits_{i=1}^{n} b_{i}\right)+\sum\limits_{k=1}^{n-1}\left(\sum\limits_{i=1}^{k} b_{i}\right)\left(a_{k}-a_{k+1}\right) \\ &=\sum\limits_{i=1}^{n} a_{i} b_{i} . \end{aligned}
再由Cauchy不等式,有
\sum\limits_{i=1}^{n}a_{i}b_{i}\leqslant \left(\sum\limits_{i=1}^{n}a_{i}^2\right)^{\frac{1}{2}}\cdot \left(\sum\limits_{i=1}^{n}b_{i}^{2}\right)^{\frac{1}{2}},
即得\sum\limits_{i=1}^{n}a_{i}^{2}\leqslant\sum\limits_{i=1}^{n}b_{i}^{2}.
(2)
\begin{aligned} \sum\limits_{i=1}^{n} a_{i}^{3} &=a_{n}^{2}\left(\sum\limits_{i=1}^{n} a_{i}\right)+\sum\limits_{k=1}^{n-1}\left(\sum\limits_{i=1}^{k} a_{i}\right)\left(a_{k}^{2}-a_{k+1}^{2}\right) \\ & \leqslant a_{n}^{2}\left(\sum\limits_{i=1}^{n} b_{i}\right)+\sum\limits_{k=1}^{n-1}\left(\sum\limits_{i=1}^{k} b_{i}\right)\left(a_{k}^{2}-a_{k+1}^{2}\right) \\ &=\sum\limits_{i=1}^{n} a_{i}^{2} b_{i} \\ &=\sum\limits_{i=1}^{n}\left(a_{i}^{\frac{3}{2}} \cdot a_{i}^{\frac{1}{2}} b_{i}\right) \\ & \leqslant\left(\sum\limits_{i=1}^{n} a_{i}^{3}\right)^{\frac{1}{2}} \cdot\left(\sum\limits_{i=1}^{n} a_{i} b_{i}^{2}\right)^{\frac{1}{2}}. \end{aligned}
\sum\limits_{i=1}^{n}a_{i}^{3}\leqslant\sum\limits_{i=1}^{n}a_{i}b_{i}^{2}.

2022-03-08-05

(来源: 数学奥林匹克小丛书 第二版 高中卷 不等式的解题方法与技巧 苏勇 熊斌 证明不等式的基本方法 P036 例8)

a_{1},a_{2},\cdots 是正实数列,且对所有i,j=1,2,\cdots满足a_{i+j}\leqslant a_{i}+a_{j}.求证:对于正整数n,有
a_{1}+\dfrac{a_{2}}{2}+\dfrac{a_{3}}{3}+\cdots +\dfrac{a_{n}}{n}\geqslant a_{n}.
分析由条件,当i+j=k时,有a_{i}-a_{k-i}\geqslant a_{k};,于是得到关于和s_{k-1}=a_{1}+\cdots +a_{k-1}的估计,而差\dfrac{1}{i}-\dfrac{1}{i+1}是易是易求的,提示我们用Abel变换公式.

证明

利用Abel变换法.

s_{i}=a_{1}+a_{2}+\cdots +a_{i},i=1,2,\cdots ,n.

约定s_{0}=0,则
2s_{i}=\left(a_{1}+a_{i}\right)+\cdots +\left(a_{i}+a_{1}\right)\geqslant ia_{i+1}.

s_{i}\geqslant \dfrac{i}{2}\cdot a_{i+1}.


\begin{aligned} \sum\limits_{i=1}^{n}\dfrac{a_{i}}{i}&=\sum\limits_{i=1}^{n}\dfrac{s_{i}-s_{i-1}}{i}\\ &=\sum\limits_{i=1}^{n-1}s_{i}\left(\dfrac{1}{i}-\dfrac{1}{i+1}\right)+\dfrac{1}{n}\cdot s_{n}\\ &\geqslant \dfrac{1}{2}s_{1}+\sum\limits_{i=1}^{n-1}\dfrac{ia_{i+1}}{2}\left(\dfrac{1}{i}-\dfrac{1}{i+1}\right)+\dfrac{1}{n}s_{n}\\ &=\dfrac{1}{2}s_{1}+\dfrac{1}{2}\cdot\sum\limits_{i=1}^{n-1}\dfrac{ia_{i+1}}{i+1}+\dfrac{1}{n}s_{n}\\ &=\dfrac{1}{2}\cdot\sum\limits_{i=1}^{n}\dfrac{a_{i}}{i}+\dfrac{1}{n}s_{n}. \end{aligned}

因此
\begin{aligned} & \sum\limits_{i=1}^{n} \dfrac{a_{i}}{i} \\ \geqslant &\dfrac{2}{n} s_{n} \\ =& \dfrac{2}{n}\left(s_{n-1}+a_{n}\right) \\ \geqslant & \dfrac{2}{n} \cdot\left(\dfrac{n-1}{2} a_{n}+a_{n}\right) \\ =& \dfrac{n+1}{n} a_{n}\\ >&a_{n} . \end{aligned}
故原不等式成立.

说明如果去掉a_{1},a_{2},\cdots,是正的这一条件,则可用数学归纳法证明本题(参见习题7第5题).

上一篇 下一篇

猜你喜欢

热点阅读