区块链技术区块链研习社密码

(燕宝)量子密码和后量子密码

2017-12-01  本文已影响175人  大圣2017

2017-12-01 上海保交所 燕宝 量子密码和后量子密码

近日,由中国金融科技50人论坛(CFT50)与证券信息技术研究发展中心(上海)举办的“区块链里的密码学技术”闭门研讨会议,在上海证券大厦举行。

主题演讲,上海保交所区块链底层首席架构师 燕宝

以下为发言实录(经本人审核修改)。

《区块链技术体系中的加密技术 - 量子密码和后量子密码》

非常感谢CFT50论坛提供一个区块链技术交流的平台,白老师(白硕)、王老师(王励成)的演讲都非常精彩,我在这里跟大家简单分享一下我们近期的在区块链技术的研究方向。

我们在实际应用当中,碰到了很多像白老师前面讲解内容一样的需求,特别突出是在数据安全防护、身份和交易数据的隐私保护方面。在某些应用案例中,银行方面提出

“区块链中的数据是通过现有的加密算法是保证安全,目前是安全的,但不代表一直是安全的;数据多方存储(分布式存储),存在潜在的安全风险”。

在交流的过程中,他们提出了量子计算攻击和后量子密码算法方面的意见和看法,我们就和上海交大-密码与计算机安全实验谷老师的团队,针对于这方面去做了一些深入的交流和研究,今天将我们学习研究的内容跟大家简单分享一下。

首先和大家介绍一下分享的议程,

一、背景知识

在分享量子密码与后量子密码之前,了解一下量子相关的背景知识。先从量子力学说起吧,量子力学里面描述微观物质理论,与相对论一起被认为是现代物理学的两大基础支柱。

微观世界里,粒子嗡嗡跳跃的概率云,它们不只存在一个位置,也不会从一个A点通过一条单一路径到达B点;此外,微观粒子具有波粒二象性。微观体系里的状态的有两种变化,

量子就是量子世界中物质客体的总称,他既可以是光子、电子、原子、原子核、基本粒子等微观粒子,也可以是波色-爱因斯坦凝聚、超导体、“薛定谔猫”等宏观尺度下的量子系统,他们的共同特征就是必须遵从量子力学的规律。

后面我们看一下从量子力学里几个重要理论。

基于量子力学的理论基础,后面介绍一下量子通讯、量子计算与量子计算机。

量子计算机是一类遵循量子力学规律进行高速数学和逻辑运算、存储及处理量子信息的物理装置,该装置处理和计算的是量子信息、运行的是量子算法。

量子计算机使用的是量子比特,量子计算机能秒杀传统计算机得益于两个独特的量子效应:量子叠加和量子纠缠

二、量子密码与后量子密码

第二阶段,大家简单分享一下量子密码和后量子密码知识。

Shannon证明,若密钥为长度不小于待加密的明文长度的随机序列,且任何一密钥仅使用一次,该加密体制(C=PK)是无条件安全的(Perfect Secrecy)。

为何“一次一密”密码迄今未被广泛使用呢?主要原因是,“一次一密”要大量消耗“密钥”,需要通信双方不断地更新密码本,而“密码本”的传送(称为“密钥分配”)是关键问题所在。

量子密码的安全性由量子力学原理所保证,具体来说,其安全性依赖于:

量子密码在理想状态下可以确保密钥的安全性,但实际上量子密码系统绝对达不到理想状态,例如单粒子探测效率不是百分百的,它会产生传输损耗,各种器件不完善等等问题,这些非理想漏洞就可能被窃听者用来窃取密钥,但却不会被合法用户发现。同时,量子密码体系必须确保安全密钥的生成率足够高,以达到信息“一次一密”加密的需求。

目前,在百公里范围的城域网,量子密码体系可以做到密钥分配在现有的各种攻击下是安全的,安全密钥生成率在25公里内可确保高清视频“一次一密”。

量子攻击方法可分为非相干攻击和相干攻击。

由于量子信息的奇妙特性,使得量子计算具有天然的并行性,且其计算能力可随着量子比特位数的增加呈指数增长;量子计算机的这种超强计算能力,使得基于某些数学难题的传统公钥密码的安全受到挑战;然而,量子计算机并不能解决电子计算机难于求解的所有数学问题。基于量子计算机不擅长计算的那些数学问题构造密码,就可以抵抗量子计算的攻击,我们称能够抵抗量子计算机攻击的密码为抗量子计算密码,或后量子密码

出于对抗量子计算密码需求的紧迫性,国际上从2006年开始举办"抗量子计算密码学术会议(Post-QuantumCryptography)",每两年举行一次,至今已举办了4届,已经产生了一批重要的研究成果,让人们看到了抗量子计算密码的新曙光。

在后面和大家分享一下四种主流的后量子密码算法及其优缺点。

第一种是基于哈希算法签名(Hash-based signatures),安全依赖于底层的哈希函数的抗碰撞性;
优点:安全要求是最小的;
缺点:只能用于量子签名方案(签名/验签)。

第二种是基于多元二次方程式密码(Multivariate-quadratic-equations-cryptography),多变量密码体制(MPKC)被认为是能够抵御基于量子计算机攻击的新型公钥密码体制之一,利用减扰动方法构造出了一种基于MPKC的新型签名方案,其计算效率,主要指中心映射求逆的效率高于两个著名的多变量签名体制Sflash和Quartz;
优点:与基于hash的签名方案相比,签名较短;
缺点:与传统的RSA、ECC等系统相比,密钥非常大;还有在MPKCs的可证明安全性没有实质性的结果。

第三种是基于编码密码(Code-basedcryptography),算法原语(底层单向函数)使用纠错码,第一个基于编码密码(公钥加密方案)是由Robert J. McEliece在1978年提出的;
优点:加解密速度快;
缺点:大型公钥大小(100KBS-几MBS),签名/验签成本大,

“基于编码密码体系没有实际应用是知道”;二元Goppa码是安全的(似乎是),而其他基于编码密码体系适用应仔细考虑,有些方案看上去并不是很牢靠的。

第四种是基于格密码(Lattice-basedcryptography),安全性是基于最坏情况下格问题的困难,Ajtai在1996年提出“Collision-ResistantHash Function”,Goldreichet al.在1997年提出“PKE and signature schemes”,Ajtai和Dwork在1997年提出“PKE scheme”;
优点:可证明安全:基于最坏情况硬度的强安全性证明;相对高效的实现;非常简单;多用途,许多先进的密码体制的提出,例如:IBE、ABE、FHE;
缺点:暂无。

现在密码学术界,对于后量子密码的方案基本上是基于哈希函数签名基于格密码两者结合的,基于哈希函数签名用于抗量子密码体系的签名/验签,基于格密码用于抗量子密码体系的加密/解密。

三、区块链世界里的密码攻击以及量子密码破译算法

第三阶段,和大家分享一下在区块链世界里的密码攻击以及量子密码破译算法。针对现有区块链技术,攻击主要集中在四个方面:

目前,可用于密码破译的量子计算算法主要有Grover算法Shor算法

对于密码破译来说,

因此,在量子计算环境下,RSA、EIGamal、ECC公钥密码和DH密钥协商协议将不再安全

我们设计新区块链底层的时候,着重考虑数据隔离、数据安全防护以及隐私保护方面。今天准备并不是非常充分,简单大家分享到此,非常感谢!

上一篇 下一篇

猜你喜欢

热点阅读