我爱编程

2018-03-27 第一周

2018-04-08  本文已影响0人  hobxzzy

本周,我们完成整体的环境搭建:python3.6, Tensorflow1.7.0。

学习,实践各自负责的算法部分,如RNN算法,我使用google提供的手写体识别的MINST数据, 来进行熟悉tensorflow框架,以及lstm算法的具体操作,如下是我的Demo部分代码:

# -*- coding: utf-8 -*-

import tensorflowas tf

from tensorflow.examples.tutorials.mnistimport input_data

tf.set_random_seed(1)# set random seed

# 导入数据

mnist = input_data.read_data_sets('MNIST_data',one_hot=True)

# hyperparameters

lr =0.001                  # learning rate

training_iters =100000    # train step 上限

batch_size =128

n_inputs =28              # MNIST data input (img shape: 28*28)

n_steps =28                # time steps

n_hidden_units =1024      # neurons in hidden layer

n_classes =10              # MNIST classes (0-9 digits# )

# x y placeholder

x = tf.placeholder(tf.float32, [None, n_steps, n_inputs])

y = tf.placeholder(tf.float32, [None, n_classes])

# 对 weights biases 初始值的定义

weights = {

# shape (28, 128)

    'in': tf.Variable(tf.random_normal([n_inputs, n_hidden_units])),

# shape (128, 10)

    'out': tf.Variable(tf.random_normal([n_hidden_units, n_classes]))

}

biases = {

# shape (128, )

    'in': tf.Variable(tf.constant(0.1,shape=[n_hidden_units, ])),

# shape (10, )

    'out': tf.Variable(tf.constant(0.1,shape=[n_classes, ]))

}

def RNN(X, weights, biases):

# 原始的 X 是 3 维数据, 我们需要把它变成 2 维数据才能使用 weights 的矩阵乘法

# X ==> (128 batches * 28 steps, 28 inputs)

    X = tf.reshape(X, [-1, n_inputs])

# X_in = W*X + b

    X_in = tf.matmul(X, weights['in']) + biases['in']

# X_in ==> (128 batches, 28 steps, 128 hidden) 换回3维

    X_in = tf.reshape(X_in, [-1, n_steps, n_hidden_units])

# 使用 basic LSTM Cell.

    lstm_cell = tf.contrib.rnn.BasicLSTMCell(n_hidden_units,forget_bias=1.0,state_is_tuple=True)

init_state = lstm_cell.zero_state(batch_size,dtype=tf.float32)# 初始化全零 state

    outputs, final_state = tf.nn.dynamic_rnn(lstm_cell, X_in,initial_state=init_state,time_major=False)

results = tf.matmul(final_state[1], weights['out']) + biases['out']

return results

pred = RNN(x, weights, biases)

cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels = y,logits=pred))

train_op = tf.train.AdamOptimizer(lr).minimize(cost)

correct_pred = tf.equal(tf.argmax(pred,1), tf.argmax(y,1))

accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))

# init= tf.initialize_all_variables() # tf 马上就要废弃这种写法

# 替换成下面的写法:

init = tf.global_variables_initializer()

with tf.Session()as sess:

sess.run(init)

step =0

 while step * batch_size < training_iters:

batch_xs, batch_ys = mnist.train.next_batch(batch_size)

batch_xs = batch_xs.reshape([batch_size, n_steps, n_inputs])

sess.run([train_op],feed_dict={

x: batch_xs,

y: batch_ys,

})

if step %20 ==0:

print(sess.run(accuracy,feed_dict={

x: batch_xs,

y: batch_ys,

}))

step +=1

整个Demo数据量不大,仅用来熟悉tensorflow的框架,总体来说长短时记忆神经网络(更善于自然语言处理)对图形识别不如CNN的效果,但是还是可以达到98%的正确率。

上一篇下一篇

猜你喜欢

热点阅读