kaldi实时流语音识别.md
kaldi 实时流 语音识别 语音评测交流QQ 1183214565
![](https://img.haomeiwen.com/i18092862/e23f870f962941e9.png)
训练步骤
### 1. train a monophone system
steps/train_mono.sh --boost-silence 1.25 --nj 5 --cmd "$train_cmd" \
data/train_500short data/lang_nosp exp/mono
### 2.train a first delta + delta-delta triphone system on all utterances
steps/train_deltas.sh --boost-silence 1.25 --cmd "$train_cmd" \
2000 10000 data/train_clean_5 data/lang_nosp exp/mono_ali_train_clean_5 exp/tri1
### 3.train an LDA+MLLT system.
steps/train_lda_mllt.sh --cmd "$train_cmd" \
--splice-opts "--left-context=3 --right-context=3" 2500 15000 \
data/train_clean_5 data/lang_nosp exp/tri1_ali_train_clean_5 exp/tri2b
### 4.Train tri3b, which is LDA+MLLT+SAT
steps/train_sat.sh --cmd "$train_cmd" 2500 15000 \
data/train_clean_5 data/lang_nosp exp/tri2b_ali_train_clean_5 exp/tri3b
### 5. Now we compute the pronunciation and silence probabilities from training data,and re-create the lang directory.
steps/get_prons.sh --cmd "$train_cmd" \
data/train_clean_5 data/lang_nosp exp/tri3b
### 6. Train a chain model
local/chain/run_tdnn.sh --stage 0
### 实时流
this->feature_pipeline = new OnlineNnet2FeaturePipeline(*(this->feature_info));
this->decoder = new SingleUtteranceNnet3Decoder(*(this->decoder_opts), *(this->trans_model),
*(this->decodable_info),
*(this->decode_fst), this->feature_pipeline);