Fine-tune mT5模型

2022-04-21  本文已影响0人  乘瓠散人

我们之前介绍过,Google的大规模预训练语言模型T5(Text-to-Text Transfer Transformer)是仅仅基于英文语料训练的,因此无法应用在中文语料上。之后,Google又相继推出了支持多语言的版本——mT5(Multilingual T5),没错,就是“走自己的路,让别人无路可走”的感觉,不过因此也就方便我们(站在巨人的肩膀上)使用中文数据了。

本文会介绍调用mT5模型的关键代码,主要基于Huggingface transformer库 mT5 来实现,但是中文相关数据集需要自己提供。

mT5: A massively multilingual pre-trained text-to-text transformer

Pytorch-Lightning

为了突出代码的核心逻辑,我们会用到pytorch-lightning这个库,先简单介绍下。Pytorch-Lightning是在Pytorch基础上封装的一个高阶库,让用户能够专注于核心代码的构建,摆脱一些繁琐的细节,从而使得实验研究能够更加轻量高效地进行。可以参考Lightning in 15 minutes 快速浏览pytorch-lightning精简原始pytorch代码的过程。

pytorch-lightning

使用mT5模型

1. 环境配置

!pip install --quiet sentencepiece==0.1.96 # 注意安装在transformers之前
!pip install --quiet transformers==4.18.0
!pip install --quiet pytorch-lightning==1.6.1

2. 加载预训练模型

from transformers import MT5Tokenizer, MT5ForConditionalGeneration
import torch

tokenizer = MT5Tokenizer.from_pretrained('google/mt5-small')
model = MT5ForConditionalGeneration.from_pretrained('google/mt5-small')

# the following 2 hyperparameters are task-specific
max_source_length = 128 # 512
max_target_length = 128

3. tokenize sentences

这里打印一些例子,方便我们理解对输入句子的分词处理。

# Suppose we have the following 2 training examples:
input_sequence_1 = "Welcome to Beijing"
output_sequence_1 = "欢迎来到北京"

input_sequence_2 = "HuggingFace is a company"
output_sequence_2 = "拥抱脸是一家公司"

# encode the inputs
task_prefix = "translate English to Chinese: "
input_sequences = [input_sequence_1, input_sequence_2]

input_tokens_1 = tokenizer.tokenize(task_prefix + input_sequence_1)
print('input_tokens_1:', input_tokens_1)
output_tokens_1 = tokenizer.tokenize(output_sequence_1)
print('output_tokens_1:', output_tokens_1)

input_tokens_2 = tokenizer.tokenize(task_prefix + input_sequence_2)
print('input_tokens 2:', input_tokens_2)
output_tokens_2 = tokenizer.tokenize(output_sequence_2)
print('output_tokens_2:', output_tokens_2)

encoding = tokenizer(
    [task_prefix + sequence for sequence in input_sequences],
    padding="longest", # pad to the longest sequence in the batch
    max_length=max_source_length,
    truncation=True,
    return_tensors="pt",
)

print('encoding', encoding)
input_ids, attention_mask = encoding.input_ids, encoding.attention_mask

# encode the targets
target_encoding = tokenizer(
    [output_sequence_1, output_sequence_2], padding="longest", max_length=max_target_length, truncation=True
)
labels = target_encoding.input_ids

print('Labels:', labels)

得到的输入结果为:

output

会发现句子的input_ids 末尾会多一个token_id=1,其实是对应添加到句子末尾的token</s>

4. 准备模型

class MT5FineTuner(pl.LightningModule):
    def __init__(self, hparams, mt5model, mt5tokenizer):
        super(MT5FineTuner, self).__init__()
        # self.hparams = hparams
        self.save_hyperparameters(hparams)
        self.model = mt5model
        self.tokenizer = mt5tokenizer

    def forward(self, input_ids, attention_mask=None, decoder_input_ids=None, decoder_attention_mask=None,
                lm_labels=None):
        outputs = self.model(
            input_ids=input_ids,
            attention_mask=attention_mask,
            decoder_attention_mask=decoder_attention_mask,
            labels=lm_labels,
        )

        return outputs

    def training_step(self, batch, batch_idx):
        outputs = self.forward(
            input_ids=batch["source_ids"],
            attention_mask=batch["source_mask"],
            decoder_input_ids=batch["target_ids"],
            decoder_attention_mask=batch['target_mask'],
            lm_labels=batch['labels']
        )

        loss = outputs[0]
        self.log('train_loss', loss)
        return loss

    def validation_step(self, batch, batch_idx):
        outputs = self.forward(
            input_ids=batch["source_ids"],
            attention_mask=batch["source_mask"],
            decoder_input_ids=batch["target_ids"],
            decoder_attention_mask=batch['target_mask'],
            lm_labels=batch['labels']
        )

        loss = outputs[0]
        self.log("val_loss", loss)
        return loss

    def train_dataloader(self):
        return DataLoader(train_dataset, batch_size=self.hparams.batch_size, num_workers=4)

    def val_dataloader(self):
        return DataLoader(validation_dataset, batch_size=self.hparams.batch_size, num_workers=4)

    def configure_optimizers(self):
        optimizer = AdamW(self.parameters(), lr=3e-4, eps=1e-8)
        return optimizer

5. 训练模型

import pytorch_lightning as pl

args_dict = dict(
    batch_size=1,
)
args = argparse.Namespace(**args_dict)

model = MT5FineTuner(args, mt5_model, mt5_tokenizer)

trainer = pl.Trainer(max_epochs=5, gpus=1, log_every_n_steps=1)
trainer.fit(model)

5. 测试模型

test_sent = 'translate: The sailor was happy.'
test_tokenized = mt5_tokenizer(test_sent, return_tensors="pt")

test_input_ids = test_tokenized["input_ids"]
test_attention_mask = test_tokenized["attention_mask"]

model.model.eval()
beam_outputs = model.model.generate(
    input_ids=test_input_ids, 
    attention_mask=test_attention_mask
)
sent = mt5_tokenizer.decode(beam_outputs[0], skip_special_tokens=True, clean_up_tokenization_spaces=True)
print(sent)

完整代码逻辑参考 Minimalistic training of T5 transformer with Pytorch Lightning and HuggingFace.ipynb

Pytorch Lightning 完全攻略 - 知乎
Huggingface-mT5教程

上一篇下一篇

猜你喜欢

热点阅读