源码解析

Swift进阶-Array源码分析

2022-03-25  本文已影响0人  顶级蜗牛

Swift进阶-类与结构体
Swift-函数派发
Swift进阶-属性
Swift进阶-指针
Swift进阶-内存管理
Swift进阶-TargetClassMetadata和TargetStructMetadata数据结构源码分析
Swift进阶-Mirror解析
Swift进阶-闭包
Swift进阶-协议
Swift进阶-泛型
Swift进阶-String源码解析
Swift进阶-Array源码解析

一、源码分析Array的内存结构

通过字面量初始化数组背后发生的事情,通过 SIL 来观察一下数组:

var number = [1, 2, 3, 4, 5, 6]
sil

当我们通过字面量的方式创建一个Array的时候就会调用_allocateUninitializedArray
swift源码中找到ArrayShared.swift_allocateUninitializedArray的声明:

/// Returns an Array of `_count` uninitialized elements using the
/// given `storage`, and a pointer to uninitialized memory for the
/// first element.
///
/// This function is referenced by the compiler to allocate array literals.
///
/// - Precondition: `storage` is `_ContiguousArrayStorage`.
@inlinable // FIXME(inline-always)
@inline(__always)
@_semantics("array.uninitialized_intrinsic")
public // COMPILER_INTRINSIC
func _allocateUninitializedArray<Element>(_  builtinCount: Builtin.Word)
    -> (Array<Element>, Builtin.RawPointer) {
  // builtinCount元素个数
  let count = Int(builtinCount)
  if count > 0 {
    // 如果大于0就创建内存空间
    // Doing the actual buffer allocation outside of the array.uninitialized
    // semantics function enables stack propagation of the buffer.
    // allocWithTailElems_1最终会调用allocObject来分配堆区内存空间,来去存储数组当中的元素
    let bufferObject = Builtin.allocWithTailElems_1(
       getContiguousArrayStorageType(for: Element.self),
       builtinCount, Element.self)
    // _adoptStorage其实就是创建array
    let (array, ptr) = Array<Element>._adoptStorage(bufferObject, count: count)
    return (array, ptr._rawValue)
  }
  // 如果小于等于0就创建空类型的数组(字面量创建数组会走这种方式)
  // For an empty array no buffer allocation is needed.
  let (array, ptr) = Array<Element>._allocateUninitialized(count)
  return (array, ptr._rawValue)
}

1.如果参数builtinCount元素个数大于0,就创建内存空间;
Builtin.allocWithTailElems_1最终会调用alloc_Object来分配堆区内存空间,来去存储数组当中的元素;
Array<Element>._adoptStorage其实就是创建返回了array和第一个元素首地址。
2.如果参数builtinCount元素个数小于等于0,就创建空类型的数组。

找到Array.swift_adoptStorage的声明:

  /// Returns an Array of `count` uninitialized elements using the
  /// given `storage`, and a pointer to uninitialized memory for the
  /// first element.
  ///
  /// - Precondition: `storage is _ContiguousArrayStorage`.
  @inlinable
  @_semantics("array.uninitialized")
  internal static func _adoptStorage(
    _ storage: __owned _ContiguousArrayStorage<Element>, count: Int
  ) -> (Array, UnsafeMutablePointer<Element>) {

    let innerBuffer = _ContiguousArrayBuffer<Element>(
      count: count,
      storage: storage)

    // 返回的是一个元组,第一个元素是Array,第二个元素是firstElement首地址
    return (
      Array(
        _buffer: _Buffer(_buffer: innerBuffer, shiftedToStartIndex: 0)),
        innerBuffer.firstElementAddress)
  }

为什么还要返回第一个元素首地址呢?
是因为第一个元素前面还有是属于Array的内存空间,告诉外界我这是首地址方便使用数据。

Array声明的时候就知道_ContiguousArrayBuffer是成员变量:

Array声明

由于_ContiguousArrayBuffer代码比较多,我就不粘贴了。
ContiguousArrayBuffer.swift找到_ContiguousArrayBuffer的初始化函数:

  /// Initialize using the given uninitialized `storage`.
  /// The storage is assumed to be uninitialized. The returned buffer has the
  /// body part of the storage initialized, but not the elements.
  ///
  /// - Warning: The result has uninitialized elements.
  /// 
  /// - Warning: storage may have been stack-allocated, so it's
  ///   crucial not to call, e.g., `malloc_size` on it.
  @inlinable
  internal init(count: Int, storage: _ContiguousArrayStorage<Element>) {
    _storage = storage

    _initStorageHeader(count: count, capacity: count)
  }

发现_ContiguousArrayStorage的实例_storage是_ContiguousArrayBuffer的一个成员变量。

于是我又找到ContiguousArrayBuffer.swift里的_ContiguousArrayStorage声明:

// The class that implements the storage for a ContiguousArray<Element>
@_fixed_layout
@usableFromInline
internal final class _ContiguousArrayStorage<
  Element
>: __ContiguousArrayStorageBase {

  @inlinable
  deinit {
    _elementPointer.deinitialize(count: countAndCapacity.count)
    _fixLifetime(self)
  }

#if _runtime(_ObjC)
  
  internal final override func withUnsafeBufferOfObjects<R>(
    _ body: (UnsafeBufferPointer<AnyObject>) throws -> R
  ) rethrows -> R {
    _internalInvariant(_isBridgedVerbatimToObjectiveC(Element.self))
    let count = countAndCapacity.count
    let elements = UnsafeRawPointer(_elementPointer)
      .assumingMemoryBound(to: AnyObject.self)
    defer { _fixLifetime(self) }
    return try body(UnsafeBufferPointer(start: elements, count: count))
  }
  
  @objc(countByEnumeratingWithState:objects:count:)
  @_effects(releasenone)
  internal final override func countByEnumerating(
    with state: UnsafeMutablePointer<_SwiftNSFastEnumerationState>,
    objects: UnsafeMutablePointer<AnyObject>?, count: Int
  ) -> Int {
    var enumerationState = state.pointee
    
    if enumerationState.state != 0 {
      return 0
    }
    
    return withUnsafeBufferOfObjects {
      objects in
      enumerationState.mutationsPtr = _fastEnumerationStorageMutationsPtr
      enumerationState.itemsPtr =
        AutoreleasingUnsafeMutablePointer(objects.baseAddress)
      enumerationState.state = 1
      state.pointee = enumerationState
      return objects.count
    }
  }
  
  @inline(__always)
  @_effects(readonly)
  @nonobjc private func _objectAt(_ index: Int) -> Unmanaged<AnyObject> {
    return withUnsafeBufferOfObjects {
      objects in
      _precondition(
        _isValidArraySubscript(index, count: objects.count),
        "Array index out of range")
      return Unmanaged.passUnretained(objects[index])
    }
  }
  
  @objc(objectAtIndexedSubscript:)
  @_effects(readonly)
  final override internal func objectAtSubscript(_ index: Int) -> Unmanaged<AnyObject> {
    return _objectAt(index)
  }
  
  @objc(objectAtIndex:)
  @_effects(readonly)
  final override internal func objectAt(_ index: Int) -> Unmanaged<AnyObject> {
    return _objectAt(index)
  }
  
  @objc internal override final var count: Int {
    @_effects(readonly) get {
      return withUnsafeBufferOfObjects { $0.count }
    }
  }

  @_effects(releasenone)
  @objc internal override final func getObjects(
    _ aBuffer: UnsafeMutablePointer<AnyObject>, range: _SwiftNSRange
  ) {
    return withUnsafeBufferOfObjects {
      objects in
      _precondition(
        _isValidArrayIndex(range.location, count: objects.count),
        "Array index out of range")

      _precondition(
        _isValidArrayIndex(
          range.location + range.length, count: objects.count),
        "Array index out of range")

      if objects.isEmpty { return }

      // These objects are "returned" at +0, so treat them as pointer values to
      // avoid retains. Copy bytes via a raw pointer to circumvent reference
      // counting while correctly aliasing with all other pointer types.
      UnsafeMutableRawPointer(aBuffer).copyMemory(
        from: objects.baseAddress! + range.location,
        byteCount: range.length * MemoryLayout<AnyObject>.stride)
    }
  }
  
  /// If the `Element` is bridged verbatim, invoke `body` on an
  /// `UnsafeBufferPointer` to the elements and return the result.
  /// Otherwise, return `nil`.
  internal final override func _withVerbatimBridgedUnsafeBuffer<R>(
    _ body: (UnsafeBufferPointer<AnyObject>) throws -> R
  ) rethrows -> R? {
    var result: R?
    try self._withVerbatimBridgedUnsafeBufferImpl {
      result = try body($0)
    }
    return result
  }

  /// If `Element` is bridged verbatim, invoke `body` on an
  /// `UnsafeBufferPointer` to the elements.
  internal final func _withVerbatimBridgedUnsafeBufferImpl(
    _ body: (UnsafeBufferPointer<AnyObject>) throws -> Void
  ) rethrows {
    if _isBridgedVerbatimToObjectiveC(Element.self) {
      let count = countAndCapacity.count
      let elements = UnsafeRawPointer(_elementPointer)
        .assumingMemoryBound(to: AnyObject.self)
      defer { _fixLifetime(self) }
      try body(UnsafeBufferPointer(start: elements, count: count))
    }
  }

  /// Bridge array elements and return a new buffer that owns them.
  ///
  /// - Precondition: `Element` is bridged non-verbatim.
  override internal func _getNonVerbatimBridgingBuffer() -> _BridgingBuffer {
    _internalInvariant(
      !_isBridgedVerbatimToObjectiveC(Element.self),
      "Verbatim bridging should be handled separately")
    let count = countAndCapacity.count
    let result = _BridgingBuffer(count)
    let resultPtr = result.baseAddress
    let p = _elementPointer
    for i in 0..<count {
      (resultPtr + i).initialize(to: _bridgeAnythingToObjectiveC(p[i]))
    }
    _fixLifetime(self)
    return result
  }
#endif

  /// Returns `true` if the `proposedElementType` is `Element` or a subclass of
  /// `Element`.  We can't store anything else without violating type
  /// safety; for example, the destructor has static knowledge that
  /// all of the elements can be destroyed as `Element`.
  @inlinable
  internal override func canStoreElements(
    ofDynamicType proposedElementType: Any.Type
  ) -> Bool {
#if _runtime(_ObjC)
    return proposedElementType is Element.Type
#else
    // FIXME: Dynamic casts don't currently work without objc. 
    // rdar://problem/18801510
    return false
#endif
  }

  /// A type that every element in the array is.
  @inlinable
  internal override var staticElementType: Any.Type {
    return Element.self
  }

  @inlinable
  internal final var _elementPointer: UnsafeMutablePointer<Element> {
    return UnsafeMutablePointer(Builtin.projectTailElems(self, Element.self))
  }
}

_ContiguousArrayStorage是继承自__ContiguousArrayStorageBase的,最终在SwiftNativeNSArray.swift找到了__ContiguousArrayStorageBase的声明:

/// Base class of the heap buffer backing arrays.  
///
/// NOTE: older runtimes called this _ContiguousArrayStorageBase. The
/// two must coexist, so it was renamed. The old name must not be used
/// in the new runtime.
@usableFromInline
@_fixed_layout
internal class __ContiguousArrayStorageBase
  : __SwiftNativeNSArrayWithContiguousStorage {

  @usableFromInline
  final var countAndCapacity: _ArrayBody

  @inlinable
  @nonobjc
  internal init(_doNotCallMeBase: ()) {
    _internalInvariantFailure("creating instance of __ContiguousArrayStorageBase")
  }
  
#if _runtime(_ObjC)
  internal override func withUnsafeBufferOfObjects<R>(
    _ body: (UnsafeBufferPointer<AnyObject>) throws -> R
  ) rethrows -> R {
    if let result = try _withVerbatimBridgedUnsafeBuffer(body) {
      return result
    }
    _internalInvariantFailure(
      "Can't use a buffer of non-verbatim-bridged elements as an NSArray")
  }

  /// If the stored type is bridged verbatim, invoke `body` on an
  /// `UnsafeBufferPointer` to the elements and return the result.
  /// Otherwise, return `nil`.
  internal func _withVerbatimBridgedUnsafeBuffer<R>(
    _ body: (UnsafeBufferPointer<AnyObject>) throws -> R
  ) rethrows -> R? {
    _internalInvariantFailure(
      "Concrete subclasses must implement _withVerbatimBridgedUnsafeBuffer")
  }

  internal func _getNonVerbatimBridgingBuffer() -> _BridgingBuffer {
    _internalInvariantFailure(
      "Concrete subclasses must implement _getNonVerbatimBridgingBuffer")
  }
  
  @objc(mutableCopyWithZone:)
  dynamic internal func mutableCopy(with _: _SwiftNSZone?) -> AnyObject {
    let arr = Array<AnyObject>(_ContiguousArrayBuffer(self))
    return _SwiftNSMutableArray(arr)
  }
  
  @objc(indexOfObjectIdenticalTo:)
  dynamic internal func index(ofObjectIdenticalTo object: AnyObject) -> Int {
    let arr = Array<AnyObject>(_ContiguousArrayBuffer(self))
    return arr.firstIndex { $0 === object } ?? NSNotFound
  }
#endif

@inlinable
  internal func canStoreElements(ofDynamicType _: Any.Type) -> Bool {
    _internalInvariantFailure(
      "Concrete subclasses must implement canStoreElements(ofDynamicType:)")
  }

  /// A type that every element in the array is.
  @inlinable
  internal var staticElementType: Any.Type {
    _internalInvariantFailure(
      "Concrete subclasses must implement staticElementType")
  }
  
  @inlinable
  deinit {
    _internalInvariant(
      self !== _emptyArrayStorage, "Deallocating empty array storage?!")
  }
}

整理得出:
struct Array 拥有 struct _ContiguousArrayBuffer这个类型的成员;
struct _ContiguousArrayBuffer拥有 class _ContiguousArrayStorage这个类型的成员;
class _ContiguousArrayStorage继承自class __ContiguousArrayStorageBase这个类。

所以对于Array内存结构可以分析如同下图:

Array内存结构

二、LLDB调试Array内存结构

Array表现起来像是值类型,因为Array它是struct,而在lldb调试的时候编译器帮我们处理,直接从第一个元素地址逐个做偏移取地址上的值。

number这个地址上对堆区地址的引用,通过x/8g格式化输出:

本质上Array是一个引用类型,只是在struct上嵌套了一个class
又因为Arraystruct所以在赋值的时候就会有一个写时复制的特性。

三、Array扩容

var number = [1, 2, 3, 4, 5, 6]
number.append(100)

找到源码里Array.swift的append函数声明:

  /// Adds a new element at the end of the array.
  ///
  /// Use this method to append a single element to the end of a mutable array.
  ///
  ///     var numbers = [1, 2, 3, 4, 5]
  ///     numbers.append(100)
  ///     print(numbers)
  ///     // Prints "[1, 2, 3, 4, 5, 100]"
  ///
  /// Because arrays increase their allocated capacity using an exponential
  /// strategy, appending a single element to an array is an O(1) operation
  /// when averaged over many calls to the `append(_:)` method. When an array
  /// has additional capacity and is not sharing its storage with another
  /// instance, appending an element is O(1). When an array needs to
  /// reallocate storage before appending or its storage is shared with
  /// another copy, appending is O(*n*), where *n* is the length of the array.
  ///
  /// - Parameter newElement: The element to append to the array.
  ///
  /// - Complexity: O(1) on average, over many calls to `append(_:)` on the
  ///   same array.
  @inlinable
  @_semantics("array.append_element")
  public mutating func append(_ newElement: __owned Element) {
    // Separating uniqueness check and capacity check allows hoisting the
    // uniqueness check out of a loop.
    _makeUniqueAndReserveCapacityIfNotUnique()
    let oldCount = _buffer.mutableCount
    _reserveCapacityAssumingUniqueBuffer(oldCount: oldCount)
    _appendElementAssumeUniqueAndCapacity(oldCount, newElement: newElement)
    _endMutation()
  }

_makeUniqueAndReserveCapacityIfNotUnique相当于是创建新的buffer内存空间

_buffer.beginCOWMutation的判断逻辑

  /// Returns `true` and puts the buffer in a mutable state if the buffer's
  /// storage is uniquely-referenced; otherwise performs no action and
  /// returns `false`.
  ///
  /// - Precondition: The buffer must be immutable.
  ///
  /// - Warning: It's a requirement to call `beginCOWMutation` before the buffer
  ///   is mutated.
  @_alwaysEmitIntoClient
  internal mutating func beginCOWMutation() -> Bool {
    let isUnique: Bool
    if !_isClassOrObjCExistential(Element.self) {
      isUnique = _storage.beginCOWMutationUnflaggedNative()
    } else if !_storage.beginCOWMutationNative() {
      return false
    } else {
      isUnique = _isNative
    }
#if INTERNAL_CHECKS_ENABLED && COW_CHECKS_ENABLED
    if isUnique {
      _native.isImmutable = false
    }
#endif
    return isUnique
  }

其实数组扩容是以2倍的方式
来看看是怎么扩容的:

  /// Creates a new buffer, replacing the current buffer.
  ///
  /// If `bufferIsUnique` is true, the buffer is assumed to be uniquely
  /// referenced by this array and the elements are moved - instead of copied -
  /// to the new buffer.
  /// The `minimumCapacity` is the lower bound for the new capacity.
  /// If `growForAppend` is true, the new capacity is calculated using
  /// `_growArrayCapacity`, but at least kept at `minimumCapacity`.
  @_alwaysEmitIntoClient
  internal mutating func _createNewBuffer(
    bufferIsUnique: Bool, minimumCapacity: Int, growForAppend: Bool
  ) {
    _internalInvariant(!bufferIsUnique || _buffer.isUniquelyReferenced())
    _buffer = _buffer._consumeAndCreateNew(bufferIsUnique: bufferIsUnique,
                                           minimumCapacity: minimumCapacity,
                                           growForAppend: growForAppend)
  }

_buffer._consumeAndCreateNew 找到ArrayBuffer.swift的_consumeAndCreateNew函数:

  /// Creates and returns a new uniquely referenced buffer which is a copy of
  /// this buffer.
  ///
  /// This buffer is consumed, i.e. it's released.
  @_alwaysEmitIntoClient
  @inline(never)
  @_semantics("optimize.sil.specialize.owned2guarantee.never")
  internal __consuming func _consumeAndCreateNew() -> _ArrayBuffer {
    return _consumeAndCreateNew(bufferIsUnique: false,
                                minimumCapacity: count,
                                growForAppend: false)
  }

  /// Creates and returns a new uniquely referenced buffer which is a copy of
  /// this buffer.
  ///
  /// If `bufferIsUnique` is true, the buffer is assumed to be uniquely
  /// referenced and the elements are moved - instead of copied - to the new
  /// buffer.
  /// The `minimumCapacity` is the lower bound for the new capacity.
  /// If `growForAppend` is true, the new capacity is calculated using
  /// `_growArrayCapacity`, but at least kept at `minimumCapacity`.
  ///
  /// This buffer is consumed, i.e. it's released.
  @_alwaysEmitIntoClient
  @inline(never)
  @_semantics("optimize.sil.specialize.owned2guarantee.never")
  internal __consuming func _consumeAndCreateNew(
    bufferIsUnique: Bool, minimumCapacity: Int, growForAppend: Bool
  ) -> _ArrayBuffer {
    let newCapacity = _growArrayCapacity(oldCapacity: capacity,
                                         minimumCapacity: minimumCapacity,
                                         growForAppend: growForAppend)
    let c = count
    _internalInvariant(newCapacity >= c)
    
    let newBuffer = _ContiguousArrayBuffer<Element>(
      _uninitializedCount: c, minimumCapacity: newCapacity)

    if bufferIsUnique {
      // As an optimization, if the original buffer is unique, we can just move
      // the elements instead of copying.
      let dest = newBuffer.firstElementAddress
      dest.moveInitialize(from: mutableFirstElementAddress,
                          count: c)
      _native.mutableCount = 0
    } else {
      _copyContents(
        subRange: 0..<c,
        initializing: newBuffer.mutableFirstElementAddress)
    }
    return _ArrayBuffer(_buffer: newBuffer, shiftedToStartIndex: 0)
  }

_growArrayCapacity函数就是扩容相关代码。
找到ArrayShared.swift_growArrayCapacity函数:

@inlinable
internal func _growArrayCapacity(_ capacity: Int) -> Int {
  return capacity * 2
}

扩容的判断条件

@_alwaysEmitIntoClient
internal func _growArrayCapacity(
  oldCapacity: Int, minimumCapacity: Int, growForAppend: Bool
) -> Int {
  if growForAppend {
    if oldCapacity < minimumCapacity {
      // When appending to an array, grow exponentially.
      return Swift.max(minimumCapacity, _growArrayCapacity(oldCapacity))
    }
    return oldCapacity
  }
  // If not for append, just use the specified capacity, ignoring oldCapacity.
  // This means that we "shrink" the buffer in case minimumCapacity is less
  // than oldCapacity.
  return minimumCapacity
}

如果是count > capacity 则需要扩容,每次扩容都是以当前的 capacity * 2的方式。


_reserveCapacityAssumingUniqueBuffer 如果数组是空的,_makeMutableAndUnique不会将空的数组缓冲区替换为唯一的缓冲区(它只是将其替换为空的数组singleton)。这个特定的情况是可以的,因为我们将使缓冲区在这个函数中是唯一的,因为我们请求的容量是> 0,因此_copyToNewBuffer将被调用来创建一个新的缓冲区。

  @inlinable
  @_semantics("array.mutate_unknown")
  internal mutating func _reserveCapacityAssumingUniqueBuffer(oldCount: Int) {
    // Due to make_mutable hoisting the situation can arise where we hoist
    // _makeMutableAndUnique out of loop and use it to replace
    // _makeUniqueAndReserveCapacityIfNotUnique that precedes this call. If the
    // array was empty _makeMutableAndUnique does not replace the empty array
    // buffer by a unique buffer (it just replaces it by the empty array
    // singleton).
    // This specific case is okay because we will make the buffer unique in this
    // function because we request a capacity > 0 and therefore _copyToNewBuffer
    // will be called creating a new buffer.
    let capacity = _buffer.mutableCapacity
    _internalInvariant(capacity == 0 || _buffer.isMutableAndUniquelyReferenced())

    if _slowPath(oldCount &+ 1 > capacity) {
      _createNewBuffer(bufferIsUnique: capacity > 0,
                       minimumCapacity: oldCount &+ 1,
                       growForAppend: true)
    }
  }

_appendElementAssumeUniqueAndCapacity 附加元素假定唯一和容量

  @inlinable
  @_semantics("array.mutate_unknown")
  internal mutating func _appendElementAssumeUniqueAndCapacity(
    _ oldCount: Int,
    newElement: __owned Element
  ) {
    _internalInvariant(_buffer.isMutableAndUniquelyReferenced())
    _internalInvariant(_buffer.mutableCapacity >= _buffer.mutableCount &+ 1)

    _buffer.mutableCount = oldCount &+ 1
    (_buffer.mutableFirstElementAddress + oldCount).initialize(to: newElement)
  }
上一篇下一篇

猜你喜欢

热点阅读