深入理解JAVA 虚拟机 (二)JVM 垃圾回收器 与内存分配

2017-09-07  本文已影响0人  Gxgeek

垃圾收集(Garbage Collection ,GC )

前沿:

为什么我们还要去了解GC 和内存分配 Why: ---> 当需要排查内存溢出,内存泄漏问题,垃圾收集成为系统达到更高并发的瓶颈,我们就要对于自动化 的技术实施必要的监控。

GC算法分析(一) 如何判断对象已死

/**
 * testGC()方法执行后,objA和objB会不会被GC呢? 
 * @author zzm
 */
public class ReferenceCountingGC {

    public Object instance = null;

    private static final int _1MB = 1024 * 1024;

    /**
     * 这个成员属性的唯一意义就是占点内存,以便在能在GC日志中看清楚是否有回收过
     */
    private byte[] bigSize = new byte[2 * _1MB];

    public static void testGC() {
        ReferenceCountingGC objA = new ReferenceCountingGC();
        ReferenceCountingGC objB = new ReferenceCountingGC();
        objA.instance = objB;
        objB.instance = objA;

        objA = null;
        objB = null;

        // 假设在这行发生GC,objA和objB是否能被回收?
        System.gc();
    }
}


out: 
运行结果 发生GC  代表 两个对象被回收  说明jvm 不是采用这种算法
个算法的基本思路就是通过一系列的称为“GC
Roots”的对象作为起始点,从这些节点开始向下搜索,搜索所走过的路径称为引用链(Reference Chain),当一个对象到GC
Roots没有任何引用链相连(用图论的话来说,就是从GC
Roots到这个对象不可达)时,则证明此对象是不可用的。如图3-1所示,对象object 5、object 6、object
7虽然互相有关联,但是它们到GC Roots是不可达的,所以它们将会被判定为是可回收的对象。
mark

GC算法分析(二) 垃圾收集算法

mark mark
- 缺点 空间浪费一般  空间 不够时 向 老年代申请空间(贷款)
mark

例子:

/**
 * 此代码演示了两点: 
 * 1.对象可以在被GC时自我拯救。 
 * 2.这种自救的机会只有一次,因为一个对象的finalize()方法最多只会被系统自动调用一次
 * @author zzm
 */
public class FinalizeEscapeGC {

    public static FinalizeEscapeGC SAVE_HOOK = null;

    public void isAlive() {
        System.out.println("yes, i am still alive :)");
    }

    @Override
    protected void finalize() throws Throwable {
        super.finalize();
        System.out.println("finalize mehtod executed!");
        FinalizeEscapeGC.SAVE_HOOK = this;
    }

    public static void main(String[] args) throws Throwable {
        SAVE_HOOK = new FinalizeEscapeGC();

        //对象第一次成功拯救自己
        SAVE_HOOK = null;
        System.gc();
        // 因为Finalizer方法优先级很低,暂停0.5秒,以等待它
        Thread.sleep(500);
        if (SAVE_HOOK != null) {
            SAVE_HOOK.isAlive();
        } else {
            System.out.println("no, i am dead :(");
        }

        // 下面这段代码与上面的完全相同,但是这次自救却失败了
        SAVE_HOOK = null;
        System.gc();
        // 因为Finalizer方法优先级很低,暂停0.5秒,以等待它
        Thread.sleep(500);
        if (SAVE_HOOK != null) {
            SAVE_HOOK.isAlive();
        } else {
            System.out.println("no, i am dead :(");
        }
    }
}

out:
finalize mehtod executed
yes, i am still alive :)
no, i am dead :(

典型的垃圾收集器

mark
垃圾收集器名字 介绍
Serial(串行GC)收集器 Serial收集器是一个新生代收集器,单线程执行,使用复制算法。它在进行垃圾收集时,必须暂停其他所有的工作线程(用户线程)。是Jvm client模式下默认的新生代收集器。对于限定单个CPU的环境来说,Serial收集器由于没有线程交互的开销,专心做垃圾收集自然可以获得最高的单线程收集效率。
ParNew(并行GC)收集器 ParNew收集器其实就是serial收集器的多线程版本,除了使用多条线程进行垃圾收集之外,其余行为与Serial收集器一样。
Parallel Scavenge(并行回收GC)收集器 Parallel Scavenge收集器也是一个新生代收集器,它也是使用复制算法的收集器,又是并行多线程收集器。parallel Scavenge收集器的特点是它的关注点与其他收集器不同,CMS等收集器的关注点是尽可能地缩短垃圾收集时用户线程的停顿时间,而parallel Scavenge收集器的目标则是达到一个可控制的吞吐量。吞吐量= 程序运行时间/(程序运行时间 + 垃圾收集时间),虚拟机总共运行了100分钟。其中垃圾收集花掉1分钟,那吞吐量就是99%。
Serial Old(串行GC)收集器 Serial Old是Serial收集器的老年代版本,它同样使用一个单线程执行收集,使用“标记-整理”算法。主要使用在Client模式下的虚拟机。
Parallel Old(并行GC)收集器 Parallel Old是Parallel Scavenge收集器的老年代版本,使用多线程和“标记-整理”算法。
CMS(并发GC)收集器 CMS(Concurrent Mark Sweep)收集器是一种以获取最短回收停顿时间为目标的收集器。CMS收集器是基于“标记-清除”算法实现的,整个收集过程大致分为4个步骤:①.初始标记(CMS initial mark)②.并发标记(CMS concurrenr mark)③.重新标记(CMS remark)④.并发清除(CMS concurrent sweep)
G1收集器 G1(Garbage First)收集器是JDK1.7提供的一个新收集器,G1收集器基于“标记-整理”算法实现,也就是说不会产生内存碎片。还有一个特点之前的收集器进行收集的范围都是整个新生代或老年代,而G1将整个Java堆(包括新生代,老年代)。

Stop-The-World

其他知识点

参考

我的公众号

微信公众号
上一篇 下一篇

猜你喜欢

热点阅读