pytorch

Relational graph convolutional n

2020-03-15  本文已影响0人  魏鹏飞

In this tutorial, you learn how to implement a relational graph convolutional network (R-GCN). This type of network is one effort to generalize GCN to handle different relationships between entities in a knowledge base. To learn more about the research behind R-GCN, see Modeling Relational Data with Graph Convolutional Networks

Modeling Relational Data with Graph Convolutional Networks

The straightforward graph convolutional network (GCN) and DGL tutorial) exploits structural information of a dataset (that is, the graph connectivity) in order to improve the extraction of node representations. Graph edges are left as untyped.

A knowledge graph is made up of a collection of triples in the form subject, relation, object. Edges thus encode important information and have their own embeddings to be learned. Furthermore, there may exist multiple edges among any given pair.

A brief introduction to R-GCN

In statistical relational learning (SRL), there are two fundamental tasks:

In both cases, missing information is expected to be recovered from the neighborhood structure of the graph. For example, the R-GCN paper cited earlier provides the following example. Knowing that Mikhail Baryshnikov was educated at the Vaganova Academy implies both that Mikhail Baryshnikov should have the label person, and that the triple (Mikhail Baryshnikov, lived in, Russia) must belong to the knowledge graph.

R-GCN solves these two problems using a common graph convolutional network. It’s extended with multi-edge encoding to compute embedding of the entities, but with different downstream processing.

This tutorial focuses on the first task, entity classification, to show how to generate entity representation. Complete code for both tasks is found in the DGL Github repository.

Key ideas of R-GCN

Recall that in GCN, the hidden representation for each node i at (l+1)^{th} layer is computed by:

h_i^{l+1}=\sigma(\sum_{j\in N_i}\frac{1}{c_i}W^{(l)}h_j^{(l)})\tag{1}

where c_i is a normalization constant.

The key difference between R-GCN and GCN is that in R-GCN, edges can represent different relations. In GCN, weight W^{(l)} in equation (1) is shared by all edges in layer l. In contrast, in R-GCN, different edge types use different weights and only edges of the same relation type r are associated with the same projection weight W^{(l)}_r.

So the hidden representation of entities in (l+1)^{th} layer in R-GCN can be formulated as the following equation:

h_i^{(l+1)}=\sigma(W_0^{(l)}h_i^{(l)}+\sum_{r\in R}\sum_{j\in N_l^r}\frac{1}{c_{i,r}}W_r^{(l)}h_j^{(l)})\tag{2}

where N^r_i denotes the set of neighbor indices of node i under relation r\in R and c_{i,r} is a normalization constant. In entity classification, the R-GCN paper uses c_{i,r}=|N^r_i|.

The problem of applying the above equation directly is the rapid growth of the number of parameters, especially with highly multi-relational data. In order to reduce model parameter size and prevent overfitting, the original paper proposes to use basis decomposition.

W^{(l)}_r=\sum_{b=1}^Ba_{rb}^{(l)}V_b^{(l)}\tag{3}

Therefore, the weight W^{(l)}_r is a linear combination of basis transformation V^{(l)}_b with coefficients a^{(l)}_{rb}. The number of bases B is much smaller than the number of relations in the knowledge base.

Note:
Another weight regularization, block-decomposition, is implemented in the link prediction.

Implement R-GCN in DGL

An R-GCN model is composed of several R-GCN layers. The first R-GCN layer also serves as input layer and takes in features (for example, description texts) that are associated with node entity and project to hidden space. In this tutorial, we only use the entity ID as an entity feature.

R-GCN layers
For each node, an R-GCN layer performs the following steps:

The following code is the definition of an R-GCN hidden layer.

Note:
Each relation type is associated with a different weight. Therefore, the full weight matrix has three dimensions: relation, input_feature, output_feature.

import torch
import torch.nn as nn
import torch.nn.functional as F
from dgl import DGLGraph
import dgl.function as fn
from functools import partial

class RGCNLayer(nn.Module):
    def __init__(self, in_feat, out_feat, num_rels, num_bases=-1, bias=None,
                 activation=None, is_input_layer=False):
        super(RGCNLayer, self).__init__()
        self.in_feat = in_feat
        self.out_feat = out_feat
        self.num_rels = num_rels
        self.num_bases = num_bases
        self.bias = bias
        self.activation = activation
        self.is_input_layer = is_input_layer

        # sanity check
        if self.num_bases <= 0 or self.num_bases > self.num_rels:
            self.num_bases = self.num_rels

        # weight bases in equation (3)
        self.weight = nn.Parameter(torch.Tensor(self.num_bases, self.in_feat,
                                                self.out_feat))
        if self.num_bases < self.num_rels:
            # linear combination coefficients in equation (3)
            self.w_comp = nn.Parameter(torch.Tensor(self.num_rels, self.num_bases))

        # add bias
        if self.bias:
            self.bias = nn.Parameter(torch.Tensor(out_feat))

        # init trainable parameters
        nn.init.xavier_uniform_(self.weight,
                                gain=nn.init.calculate_gain('relu'))
        if self.num_bases < self.num_rels:
            nn.init.xavier_uniform_(self.w_comp,
                                    gain=nn.init.calculate_gain('relu'))
        if self.bias:
            nn.init.xavier_uniform_(self.bias,
                                    gain=nn.init.calculate_gain('relu'))
    def forward(self, g):
        if self.num_bases < self.num_rels:
            # generate all weights from bases (equation (3))
            weight = self.weight.view(self.in_feat, self.num_bases, self.out_feat)
            weight = torch.matmul(self.w_comp, weight).view(self.num_rels,
                                                        self.in_feat, self.out_feat)
        else:
            weight = self.weight

        if self.is_input_layer:
            def message_func(edges):
                # for input layer, matrix multiply can be converted to be
                # an embedding lookup using source node id
                embed = weight.view(-1, self.out_feat)
                index = edges.data['rel_type'] * self.in_feat + edges.src['id']
                return {'msg': embed[index] * edges.data['norm']}
        else:
            def message_func(edges):
                w = weight[edges.data['rel_type']]
                msg = torch.bmm(edges.src['h'].unsqueeze(1), w).squeeze()
                msg = msg * edges.data['norm']
                return {'msg': msg}

        def apply_func(nodes):
            h = nodes.data['h']
            if self.bias:
                h = h + self.bias
            if self.activation:
                h = self.activation(h)
            return {'h': h}

        g.update_all(message_func, fn.sum(msg='msg', out='h'), apply_func)

Full R-GCN model defined

class Model(nn.Module):
    def __init__(self, num_nodes, h_dim, out_dim, num_rels,
                 num_bases=-1, num_hidden_layers=1):
        super(Model, self).__init__()
        self.num_nodes = num_nodes
        self.h_dim = h_dim
        self.out_dim = out_dim
        self.num_rels = num_rels
        self.num_bases = num_bases
        self.num_hidden_layers = num_hidden_layers

        # create rgcn layers
        self.build_model()

        # create initial features
        self.features = self.create_features()

    def build_model(self):
        self.layers = nn.ModuleList()
        # input to hidden
        i2h = self.build_input_layer()
        self.layers.append(i2h)
        # hidden to hidden
        for _ in range(self.num_hidden_layers):
            h2h = self.build_hidden_layer()
            self.layers.append(h2h)
        # hidden to output
        h2o = self.build_output_layer()
        self.layers.append(h2o)

    # initialize feature for each node
    def create_features(self):
        features = torch.arange(self.num_nodes)
        return features

    def build_input_layer(self):
        return RGCNLayer(self.num_nodes, self.h_dim, self.num_rels, self.num_bases,
                         activation=F.relu, is_input_layer=True)

    def build_hidden_layer(self):
        return RGCNLayer(self.h_dim, self.h_dim, self.num_rels, self.num_bases,
                         activation=F.relu)

    def build_output_layer(self):
        return RGCNLayer(self.h_dim, self.out_dim, self.num_rels, self.num_bases,
                         activation=partial(F.softmax, dim=1))
    def forward(self, g):
        if self.features is not None:
            g.ndata['id'] = self.features
        for layer in self.layers:
            layer(g)
        return g.ndata.pop('h')

Handle Dataset

This tutorial uses Institute for Applied Informatics and Formal Description Methods (AIFB) dataset from R-GCN paper.

# load graph data
from dgl.contrib.data import load_data
import numpy as np
data = load_data(dataset='aifb')
num_nodes = data.num_nodes
num_rels = data.num_rels
num_classes = data.num_classes
labels = data.labels
train_idx = data.train_idx
# split training and validation set
val_idx = train_idx[:len(train_idx) // 5]
train_idx = train_idx[len(train_idx) // 5:]

# edge type and normalization factor
edge_type = torch.from_numpy(data.edge_type)
edge_norm = torch.from_numpy(data.edge_norm).unsqueeze(1)

labels = torch.from_numpy(labels).view(-1)

# Results:
Loading dataset aifb
Graph loaded, frequencies counted.
Number of nodes:  8285
Number of relations:  91
Number of edges:  66371
4 classes: {'http://www.aifb.uni-karlsruhe.de/Forschungsgruppen/viewForschungsgruppeOWL/id4instance', 'http://www.aifb.uni-karlsruhe.de/Forschungsgruppen/viewForschungsgruppeOWL/id3instance', 'http://www.aifb.uni-karlsruhe.de/Forschungsgruppen/viewForschungsgruppeOWL/id2instance', 'http://www.aifb.uni-karlsruhe.de/Forschungsgruppen/viewForschungsgruppeOWL/id1instance'}
Loading training set
Loading test set
Number of classes:  4
removing nodes that are more than 3 hops away

Create graph and model

# configurations
n_hidden = 16 # number of hidden units
n_bases = -1 # use number of relations as number of bases
n_hidden_layers = 0 # use 1 input layer, 1 output layer, no hidden layer
n_epochs = 25 # epochs to train
lr = 0.01 # learning rate
l2norm = 0 # L2 norm coefficient

# create graph
g = DGLGraph()
g.add_nodes(num_nodes)
g.add_edges(data.edge_src, data.edge_dst)
g.edata.update({'rel_type': edge_type, 'norm': edge_norm})

# create model
model = Model(len(g),
              n_hidden,
              num_classes,
              num_rels,
              num_bases=n_bases,
              num_hidden_layers=n_hidden_layers)

Training loop

# optimizer
optimizer = torch.optim.Adam(model.parameters(), lr=lr, weight_decay=l2norm)

print("start training...")
model.train()
for epoch in range(n_epochs):
    optimizer.zero_grad()
    logits = model.forward(g)
    loss = F.cross_entropy(logits[train_idx], labels[train_idx])
    loss.backward()

    optimizer.step()

    train_acc = torch.sum(logits[train_idx].argmax(dim=1) == labels[train_idx])
    train_acc = train_acc.item() / len(train_idx)
    val_loss = F.cross_entropy(logits[val_idx], labels[val_idx])
    val_acc = torch.sum(logits[val_idx].argmax(dim=1) == labels[val_idx])
    val_acc = val_acc.item() / len(val_idx)
    print("Epoch {:05d} | ".format(epoch) +
          "Train Accuracy: {:.4f} | Train Loss: {:.4f} | ".format(
              train_acc, loss.item()) +
          "Validation Accuracy: {:.4f} | Validation loss: {:.4f}".format(
              val_acc, val_loss.item()))


# Results:
start training...
Epoch 00000 | Train Accuracy: 0.2054 | Train Loss: 1.3865 | Validation Accuracy: 0.1429 | Validation loss: 1.3868
Epoch 00001 | Train Accuracy: 0.9286 | Train Loss: 1.3434 | Validation Accuracy: 1.0000 | Validation loss: 1.3567
Epoch 00002 | Train Accuracy: 0.9286 | Train Loss: 1.2760 | Validation Accuracy: 1.0000 | Validation loss: 1.3106
Epoch 00003 | Train Accuracy: 0.9286 | Train Loss: 1.1868 | Validation Accuracy: 1.0000 | Validation loss: 1.2472
Epoch 00004 | Train Accuracy: 0.9375 | Train Loss: 1.0930 | Validation Accuracy: 1.0000 | Validation loss: 1.1717
Epoch 00005 | Train Accuracy: 0.9464 | Train Loss: 1.0117 | Validation Accuracy: 1.0000 | Validation loss: 1.0924
Epoch 00006 | Train Accuracy: 0.9464 | Train Loss: 0.9472 | Validation Accuracy: 1.0000 | Validation loss: 1.0163
Epoch 00007 | Train Accuracy: 0.9464 | Train Loss: 0.8976 | Validation Accuracy: 1.0000 | Validation loss: 0.9499
Epoch 00008 | Train Accuracy: 0.9554 | Train Loss: 0.8607 | Validation Accuracy: 1.0000 | Validation loss: 0.8968
Epoch 00009 | Train Accuracy: 0.9554 | Train Loss: 0.8343 | Validation Accuracy: 1.0000 | Validation loss: 0.8576
......
......
......
Epoch 00015 | Train Accuracy: 0.9732 | Train Loss: 0.7783 | Validation Accuracy: 0.9643 | Validation loss: 0.7865
Epoch 00016 | Train Accuracy: 0.9821 | Train Loss: 0.7735 | Validation Accuracy: 0.9643 | Validation loss: 0.7854
Epoch 00017 | Train Accuracy: 0.9821 | Train Loss: 0.7691 | Validation Accuracy: 0.9643 | Validation loss: 0.7851
Epoch 00018 | Train Accuracy: 0.9821 | Train Loss: 0.7654 | Validation Accuracy: 0.9643 | Validation loss: 0.7855
Epoch 00019 | Train Accuracy: 0.9821 | Train Loss: 0.7625 | Validation Accuracy: 0.9643 | Validation loss: 0.7864
Epoch 00020 | Train Accuracy: 0.9821 | Train Loss: 0.7600 | Validation Accuracy: 0.9643 | Validation loss: 0.7876
Epoch 00021 | Train Accuracy: 0.9821 | Train Loss: 0.7576 | Validation Accuracy: 0.9643 | Validation loss: 0.7893
Epoch 00022 | Train Accuracy: 0.9821 | Train Loss: 0.7553 | Validation Accuracy: 0.9643 | Validation loss: 0.7913
Epoch 00023 | Train Accuracy: 1.0000 | Train Loss: 0.7531 | Validation Accuracy: 0.9643 | Validation loss: 0.7937
Epoch 00024 | Train Accuracy: 1.0000 | Train Loss: 0.7511 | Validation Accuracy: 0.9286 | Validation loss: 0.7965

原文链接:
https://docs.dgl.ai/tutorials/models/1_gnn/4_rgcn.html

上一篇 下一篇

猜你喜欢

热点阅读