函数式接口

2020-05-27  本文已影响0人  在前行路上的奔跑

函数式接口

Lambda基本语法:() ->

函数式接口

  1. 如果一个接口只有一个抽象方法,那么该接口就是一个函数式接口。
  2. 如果我们在某个接口上声明了@FunctionalInterface注解,那么编译器就会按照函数式接口的定义来要求该接口
  3. 如果某个接口只有一个抽象方法,但我们并没有给该接口声明@FunctionalInterface注解,那么编译器依旧会将该接口看作是函数式接口。

@FunctionalInterface注解

通过阅读代码注释我们得知:

  1. functional interface只能有一个抽象方法
  2. 如果接口重写了java.lang.Object中的方法,比如toString(),并不会增加接口的抽象方法数量
/**
 * An informative annotation type used to indicate that an interface
 * type declaration is intended to be a <i>functional interface</i> as
 * defined by the Java Language Specification.
 *
 * Conceptually, a functional interface has exactly one abstract
 * method.  Since {@linkplain java.lang.reflect.Method#isDefault()
 * default methods} have an implementation, they are not abstract.  If
 * an interface declares an abstract method overriding one of the
 * public methods of {@code java.lang.Object}, that also does
 * <em>not</em> count toward the interface's abstract method count
 * since any implementation of the interface will have an
 * implementation from {@code java.lang.Object} or elsewhere.
 *
 * <p>Note that instances of functional interfaces can be created with
 * lambda expressions, method references, or constructor references.
 *
 * <p>If a type is annotated with this annotation type, compilers are
 * required to generate an error message unless:
 *
 * <ul>
 * <li> The type is an interface type and not an annotation type, enum, or class.
 * <li> The annotated type satisfies the requirements of a functional interface.
 * </ul>
 *
 * <p>However, the compiler will treat any interface meeting the
 * definition of a functional interface as a functional interface
 * regardless of whether or not a {@code FunctionalInterface}
 * annotation is present on the interface declaration.
 *
 * @jls 4.3.2. The Class Object
 * @jls 9.8 Functional Interfaces
 * @jls 9.4.3 Interface Method Body
 * @since 1.8
 */
@Documented
@Retention(RetentionPolicy.RUNTIME)
@Target(ElementType.TYPE)
public @interface FunctionalInterface {}

针对第一点很好理解,接口只能有一个抽象方法,我们重点看下第二点

这样也是符合函数式接口要求的,因为toString()是Object中的方法,是所有对象的父类

@FunctionalInterface
public interface MyInterface {

    void test();

    @Override
    String toString();

}

public static void main(String[] args) {
        MyInterface myInterface = () -> {
            System.out.println("myInterface");
        };
        System.out.println("我的类型是:"+ myInterface.getClass());
        System.out.println("我的父类是:"+ myInterface.getClass().getSuperclass());
        System.out.println("我的父类是:"+ myInterface.getClass().getSuperclass());
        System.out.println("我的抽象方法数量是:"+ myInterface.getClass().getInterfaces().length);
        System.out.println("我的抽象方法是:"+ myInterface.getClass().getInterfaces()[0]);

    }

输出信息:

我的类型是:class a.Test$$Lambda$1/990368553
我的父类是:class java.lang.Object
我的父类是:class java.lang.Object
我的抽象方法数量是:1
我的抽象方法是:interface a.MyInterface

Jdk8提供的函数式接口

Consumer

消费一个数据

代表了接受一个输入参数并且无返回的操作

Consumer.accept(T t) 接收一个需要处理的数据对象,有参数,无返回值

Consumer.andThen(Consumer<? super T> after) 接收一个Consumer继续处理

@FunctionalInterface
public interface Consumer<T> {
    void accept(T t);

    default Consumer<T> andThen(Consumer<? super T> after) {
        Objects.requireNonNull(after);
        return (T t) -> { accept(t); after.accept(t); };
    }
}

例子

public static void main(String[] args) {
        consumer("我们是一只小小的鸟, 鸟呀!", s -> {
            System.out.println("处理后字符串:" + s.replace("鸟", "人"));
        });
    }

    public static void consumer(String s1, Consumer<String> s2) {
        System.out.println("原始字符串:"+ s1);
        s2.accept(s1);
        s2.andThen(s2);
    }

Function

输入T输出R

接受一个输入参数,返回一个结果

R apply(T t) 有参数,有返回值

compose() 先调用compose,在执行调用者

andThen 先执行调用者,在执行andThen

/**
 * Represents a function that accepts one argument and produces a result.
 *
 * <p>This is a <a href="package-summary.html">functional interface</a>
 * whose functional method is {@link #apply(Object)}.
 *
 * @param <T> the type of the input to the function
 * @param <R> the type of the result of the function
 *
 * @since 1.8
 */
@FunctionalInterface
public interface Function<T, R> {

    /**
     * Applies this function to the given argument.
     *
     * @param t the function argument
     * @return the function result
     */
    R apply(T t);

    /**
     * Returns a composed function that first applies the {@code before}
     * function to its input, and then applies this function to the result.
     * If evaluation of either function throws an exception, it is relayed to
     * the caller of the composed function.
     *
     * @param <V> the type of input to the {@code before} function, and to the
     *           composed function
     * @param before the function to apply before this function is applied
     * @return a composed function that first applies the {@code before}
     * function and then applies this function
     * @throws NullPointerException if before is null
     *
     * @see #andThen(Function)
     */
    default <V> Function<V, R> compose(Function<? super V, ? extends T> before) {
        Objects.requireNonNull(before);
        return (V v) -> apply(before.apply(v));
    }

    /**
     * Returns a composed function that first applies this function to
     * its input, and then applies the {@code after} function to the result.
     * If evaluation of either function throws an exception, it is relayed to
     * the caller of the composed function.
     *
     * @param <V> the type of output of the {@code after} function, and of the
     *           composed function
     * @param after the function to apply after this function is applied
     * @return a composed function that first applies this function and then
     * applies the {@code after} function
     * @throws NullPointerException if after is null
     *
     * @see #compose(Function)
     */
    default <V> Function<T, V> andThen(Function<? super R, ? extends V> after) {
        Objects.requireNonNull(after);
        return (T t) -> after.apply(apply(t));
    }

    /**
     * Returns a function that always returns its input argument.
     *
     * @param <T> the type of the input and output objects to the function
     * @return a function that always returns its input argument
     */
    static <T> Function<T, T> identity() {
        return t -> t;
    }
}

例子

public class Test3 {

    private static void method_andThen(Function<String, String> f1, Function<String, String> f2) {
        String apply = f1.andThen(f2).apply("先执行调用者;第二章:");
        System.out.println(apply);
    }

    private static void method_compose(Function<String, String> f1, Function<String, String> f2) {
        String apply = f1.compose(f2).apply("先调用compose;第二章:");
        System.out.println(apply);
    }

    public static void main(String[] args) {

        numberToString((s) -> String.valueOf(s));

        // 第二章:天下皆知美之为美  斯恶已
        method_andThen(s -> s += "天下皆知美之为美 ", s -> s += " 斯恶已");
        // 第二章:斯恶已 天下皆知美之为美
        method_compose(s -> s += " 天下皆知美之为美 ", s -> s += "斯恶已");

        // 输入对象就是输出对象
        Object apply = Function.identity().apply("test");
        System.out.println(apply);

    }

    /**
     * 将数字转换为String类型
     * @param function
     */
    private static void numberToString(Function<Number, String> function) {
        String apply = function.apply(12);
        System.out.println("转换结果:" + apply);
    }

}

Predicate

断定型接口

接收参数T,返回boolean,用来确定T类型参数是否满足某约束,并返回boolean值

处理集合的过滤条件

@FunctionalInterface
public interface Predicate<T> {
    /**
     * 具体过滤操作 需要被子类实现.
     * 用来处理参数T是否满足要求,可以理解为 条件A
     */
    boolean test(T t);
    /**
     * 调用当前Predicate的test方法之后再去调用other的test方法,相当于进行两次判断
     * 可理解为 条件A && 条件B
     */
    default Predicate<T> and(Predicate<? super T> other) {
        Objects.requireNonNull(other);
        return (t) -> test(t) && other.test(t);
    }
    /**
     * 对当前判断进行"!"操作,即取非操作,可理解为 ! 条件A
     */
    default Predicate<T> negate() {
        return (t) -> !test(t);
    }
    /**
     * 对当前判断进行"||"操作,即取或操作,可以理解为 条件A ||条件B
     */
    default Predicate<T> or(Predicate<? super T> other) {
        Objects.requireNonNull(other);
        return (t) -> test(t) || other.test(t);
    }

    /**
     * 对当前操作进行"="操作,即取等操作,可以理解为 A == B
     */
    static <T> Predicate<T> isEqual(Object targetRef) {
        return (null == targetRef)
                ? Objects::isNull
                : object -> targetRef.equals(object);
    }
}

举例

public class TestPredicate {

    public static void main(String[] args) {
        Predicate<String> predicate = (s) -> s.length() > 5;
        boolean r = predicate.test("12346");
        // true
        System.out.println(r);

        // 在Stream中使用
        List<User> userList = initUserData();
        // User{name='狗', age='5'}
        // User{name='乌龟', age='200'}
        userList.stream().filter(u -> u.getAge() >= 5).forEach(System.out::println);

    }

    public static List<User> initUserData() {
        List<User> userList = new ArrayList<>();
        userList.add(new User("猫", 2));
        userList.add(new User("狗", 5));
        userList.add(new User("乌龟", 200));
        return userList;
    }


    static class User {
        private String name;
        private Integer age;

        public User(String name, Integer age) {
            this.name = name;
            this.age = age;
        }

        public String getName() {
            return name;
        }

        public Integer getAge() {
            return age;
        }

        @Override
        public String toString() {
            return "User{" +
                    "name='" + name + '\'' +
                    ", age='" + age + '\'' +
                    '}';
        }
    }

}

Supplier

提供数据的函数式接口

生产数据

T get(); 每个调用都会新创建一个对象


@FunctionalInterface
public interface Supplier<T> {
 
    /**
     * Gets a result.
     *
     * @return a result
     */
    T get();
}

举例

public class TestSupplier {

    public static void main(String[] args) {
        Supplier<User> user = User::new;
        User user1 = user.get();
        User user2 = user.get();

        // 1747585824
        System.out.println(user1.hashCode());
        // 1023892928
        System.out.println(user2.hashCode());

    }


    static class User {
        private String name;
        private Integer age;

        public User() {}

        public String getName() {
            return name;
        }

        public Integer getAge() {
            return age;
        }

        @Override
        public String toString() {
            return "User{" +
                    "name='" + name + '\'' +
                    ", age='" + age + '\'' +
                    '}';
        }
    }

}
上一篇下一篇

猜你喜欢

热点阅读