图像处理

图片处理-opencv-1.图像基本属性、操作

2020-10-13  本文已影响0人  lk311

一、图像的读取、显示

 

1.读入图像

img = cv2.imread(文件名,[,参数])

2.显示图像

cv2.imshow(窗口名, 图像名)

3.窗口等待

cv2.waitKey(delay)

4.删除窗口

  1. 删除所有窗口
    cv2.destroyAllWindows()
  2. 删除指定的窗口
    cv2.destroyWindows()

5.写入图片

cv2.imwrite(文件地址, 文件名)

import cv2

#读取图片
img = cv2.imread("data/test1.jpg")

#显示图像
cv2.imshow("Demo", img)

#等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()

#写入图像
cv2.imwrite("data/test_write1.jpg", img)

二、像素处理

 

基于索引

1.读取像素

2.修改图像

# 像素点的操作
import cv2

# 读取图片
img = cv2.imread("data/test1.jpg", cv2.IMREAD_UNCHANGED)
# 读取座标点像素
test = img[300, 200]
print(test)
# 修改相应位置像素
img[300, 200] = [255, 255, 255]
print(test)

#分别获取BGR通道像素
blue = img[300, 200]
# print(blue)
green = img[300, 200]
# print(green)
red = img[300, 200]
# print(red)

#显示图像
cv2.imshow("Demo", img)

#等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()
# 像素区域的操作
import cv2

#读取图片
img = cv2.imread("data/test1.jpg", cv2.IMREAD_UNCHANGED)

#该区域设置为红色
img[100:200, 150:250] = [0, 0, 255]

#显示图像
cv2.imshow("Demo", img)

#等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()

基于Numpy

1.读取像素

2.修改图像

import cv2
import numpy

#读取图片
img = cv2.imread("data/test1.jpg", cv2.IMREAD_UNCHANGED)

#Numpy读取像素
blue = img.item(300, 200, 0)
green = img.item(300, 200, 1)
red = img.item(300, 200, 2)
# print(blue)
# print(green)
# print(red)

# Numpy修改像素
img.itemset((300, 200, 0), 255)
img.itemset((300, 200, 1), 255)
img.itemset((300, 200, 2), 255)

#显示图像
cv2.imshow("Demo", img)

#等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()

三、图像属性

 

基本属性

1.形状-shape

image.shape

2.像素数目-size

image.size

3.图像类型-dtype

import cv2
import numpy

#读取图片
img = cv2.imread("data/test1.jpg", cv2.IMREAD_UNCHANGED)

#获取图像形状
print(img.shape)

#获取像素数目
print(img.size)

#获取图像类型
print(img.dtype)

图像通道

1.通道拆分

OpenCV读取的彩色图像由B、G、R三原色组成

b = img[:, :, 0]
g = img[:, :, 1]
r = img[:, :, 2]

或者

b, g, r = cv2.split(img)

2.通道合并

img = cv2.merge([b, g, r])
import cv2
import numpy as np

#读取图片
img = cv2.imread("data/test2.jpg", cv2.IMREAD_UNCHANGED)

#拆分通道
b = img[:, :, 0]
g = img[:, :, 1]
r = img[:, :, 2]

b, g, r = cv2.split(img)

#显示原始图像
cv2.imshow("B", b)
cv2.imshow("G", g)
cv2.imshow("R", r)

#合并通道
m = cv2.merge([b, g, r])
cv2.imshow("Merge", m)

# 按其他顺序合并通道
m = cv2.merge([r, g, b])
cv2.imshow("Merge1", m)
           
#等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()

三、图像类型转换

 
图像类型转换是指将一种类型转换为另一种类型,比如彩色图像转换为灰度图像、BGR图像转换为RGB图像。

result = cv2.cvtColor(src, 参数)

OPenCV提供了200多种不同类型之间的转换,其中最常用的包括3类

import cv2  
import numpy as np  
 
#读取图片
src = cv2.imread('data/test2.jpg')

#图像类型转换
#转换通道
result1 = cv2.cvtColor(src, cv2.COLOR_BGR2RGB)
#转为灰度图
result2 = cv2.cvtColor(src, cv2.COLOR_BGR2GRAY)
#转为彩色图
result3 = cv2.cvtColor(result2, cv2.COLOR_GRAY2BGR)

#显示图像
cv2.imshow("src", src)
cv2.imshow("RGB", result1)
cv2.imshow("GRAY", result2)
cv2.imshow("BGR", result3)
                       
#等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()
上一篇 下一篇

猜你喜欢

热点阅读