RcisTarget
2022-07-20 本文已影响0人
可能性之兽
笔记本堆里拣垃圾ing
title: "updata"
author: "MLP"
date: "2021/7/12"
output: html_document
RcisTarget: Transcription factor binding motif enrichment (bioconductor.org)
###Explore tutorials in the web browser:
browseVignettes(package="RcisTarget")
vignette("RcisTarget") # open
library(RcisTarget)
# Load gene sets to analyze. e.g.:
geneList1 <- read.table(file.path(system.file('examples', package='RcisTarget'), "hypoxiaGeneSet.txt"),
stringsAsFactors=FALSE)[,1]
geneLists <- list(hypoxia=geneList1 )
geneLists
# Select motif database to use (i.e. organism and distance around TSS)
data(motifAnnotations_hgnc)
motifAnnotations_hgnc
data("motifAnnotations_mgi")
motifAnnotations_mgi
motifRankings <- importRankings("cisTarget_databases/hg19-tss-centered-10kb-7species.mc9nr.feather")
# Motif enrichment analysis:
motifEnrichmentTable_wGenes <- cisTarget(geneLists, motifRankings,
motifAnnot=motifAnnotations_hgnc)
#然后是在motifRankings查看:
motifs=unlist(as.data.frame(motifRankings@rankings[,1]))
match('homer__GCACGTACCC_HIF2a',motifs)
match('hocomoco__EPAS1_HUMAN.H11MO.0.B',motifs)
# 1. Calculate AUC
motifs_AUC <- calcAUC(geneLists, motifRankings)
# 2. Select significant motifs, add TF annotation & format as table
motifEnrichmentTable <- addMotifAnnotation(motifs_AUC,
motifAnnot=motifAnnotations_hgnc)
# 3. Identify significant genes for each motif
# (i.e. genes from the gene set in the top of the ranking)
# Note: Method 'iCisTarget' instead of 'aprox' is more accurate, but slower
motifEnrichmentTable_wGenes <- addSignificantGenes(motifEnrichmentTable,
geneSets=geneLists,
rankings=motifRankings,
nCores=1,
method="aprox")
motifs_AUC <- calcAUC(geneLists, motifRankings, nCores=1)
motifs_AUC
auc <- getAUC(motifs_AUC)[1,]
hist(auc, main="hypoxia", xlab="AUC histogram",
breaks=100, col="#ff000050", border="darkred")
nes3 <- (3*sd(auc)) + mean(auc)
abline(v=nes3, col="red")
data(motifAnnotations_hgnc)
motifAnnotations_hgnc
cg=auc[auc>nes3]
names(cg)
cgmotif=motifAnnotations_hgnc[match(names(cg),motifAnnotations_hgnc$motif),]
cgmotif=na.omit(cgmotif)
motifEnrichmentTable_wGenes
motifEnrichmentTable_wGenes_wLogo <- addLogo(motifEnrichmentTable_wGenes)
library(DT)
datatable(motifEnrichmentTable_wGenes_wLogo[,-c("enrichedGenes", "TF_lowConf"), with=FALSE],
escape = FALSE, # To show the logo
filter="top", options=list(pageLength=5))
anotatedTfs <- lapply(split(motifEnrichmentTable_wGenes$TF_highConf,
motifEnrichmentTable$geneSet),
function(x) {
genes <- gsub(" \\(.*\\). ", "; ", x, fixed=FALSE)
genesSplit <- unique(unlist(strsplit(genes, "; ")))
return(genesSplit)
})
anotatedTfs$hypoxia
anotatedTfs <- lapply(split(motifEnrichmentTable_wGenes$TF_highConf,
motifEnrichmentTable$geneSet),
function(x) {
genes <- gsub(" \\(.*\\). ", "; ", x, fixed=FALSE)
genesSplit <- unique(unlist(strsplit(genes, "; ")))
return(genesSplit)
})
anotatedTfs$hypoxia
signifMotifNames <- motifEnrichmentTable$motif[1:3]
incidenceMatrix <- getSignificantGenes(geneLists$hypoxia,
motifRankings,
signifRankingNames=signifMotifNames,
plotCurve=TRUE, maxRank=5000,
genesFormat="incidMatrix",
method="aprox")$incidMatrix
library(reshape2)
edges <- melt(incidenceMatrix)
edges <- edges[which(edges[,3]==1),1:2]
colnames(edges) <- c("from","to")
library(visNetwork)
motifs <- unique(as.character(edges[,1]))
genes <- unique(as.character(edges[,2]))
nodes <- data.frame(id=c(motifs, genes),
label=c(motifs, genes),
title=c(motifs, genes), # tooltip
shape=c(rep("diamond", length(motifs)), rep("elypse", length(genes))),
color=c(rep("purple", length(motifs)), rep("skyblue", length(genes))))
nodes
visNetwork(nodes, edges) %>% visOptions(highlightNearest = TRUE,
nodesIdSelection = TRUE)
![](https://img.haomeiwen.com/i23627621/eccaf1aaef654cc6.png)