生物信息学习生物信息学生物信息笔记

转入组入门七(mac 版):差异基因分析

2017-11-10  本文已影响360人  Thinkando

任务

1. 读取表达矩阵
# 首先将四个文件分别赋值:control1,control2,rep1,rep2
control1 <- read.table("/Users/chengkai/Desktop/zhuanlu_files/RNA-Seq/matrix/SRR3589959.count", sep="\t", col.names = c("gene_id","control1"))
control2 <- read.table("/Users/chengkai/Desktop/zhuanlu_files/RNA-Seq/matrix/SRR3589961.count", sep="\t", col.names = c("gene_id","control2"))
rep1 <- read.table("/Users/chengkai/Desktop/zhuanlu_files/RNA-Seq/matrix/SRR3589960.count", sep="\t", col.names = c("gene_id","akap951"))
rep2 <- read.table("/Users/chengkai/Desktop/zhuanlu_files/RNA-Seq/matrix/SRR3589962.count", sep="\t",col.names = c("gene_id","akap952"))
# 将四个矩阵按照gene_id进行合并,并赋值给raw_count
raw_count <- merge(merge(control1, control2, by="gene_id"), merge(rep1,rep2, by="gene_id"))
# 需要将合并的raw_count进行过滤处理,里面有5行需要删除的行,在我们的小鼠的表达矩阵里面,是1,2,48823,48824,48825这5行。并重新赋值给raw_count_filter
raw_count_filt <- raw_count[-48823:-48825, ]
raw_count_filter <- raw_count_filt[-1:-2, ]
# 因为我们无法在EBI数据库上直接搜索找到ENSMUSG00000024045.5这样的基因,只能是ENSMUSG00000024045的整数,没有小数点,所以需要进一步替换为整数的形式。
# 第一步将匹配到的.以及后面的数字连续匹配并替换为空,并赋值给ENSEMBL
ENSEMBL <- gsub("\\.\\d*", "", raw_count_filter$gene_id)
row.names(raw_count_filter) <- ENSEMBL
raw_count_filter <- raw_count_filter[ ,-1]
image.png
2. DESeq2
# 下载DESeq2
source("https://bioconductor.org/biocLite.R")
biocLite("GenomeInfoDb")
dds <- DESeqDataSetFromMatrix(countData = cts, colData = coldata, design= ~ batch + condition) #~在R里面用于构建公式对象,~左边为因变量,右边为自变量。
dds <- DESeq(dds) #标准化
res <- results(dds, contrast=c("condition","treated","control")) #差异分析结果
3. 构建dds矩阵
# 这一步很关键,要明白condition这里是因子,不是样本名称;小鼠数据有对照组和处理组,各两个重复
> condition <- factor(c(rep("control",2),rep("akap95",2)), levels = c("control","akap95"))
# 获取count数据
> countData <- raw_count_filter[,1:4]
> colData <- data.frame(row.names=colnames(raw_count_filter), condition)
> dds <- DESeqDataSetFromMatrix(countData, colData, design= ~ condition)
# 查看一下dds的内容
> head(dds)
image.png
4. DESeq标准化dds
# normalize 数据
> dds2 <- DESeq(dds)
# 查看结果的名称,本次实验中是 "Intercept","condition_akap95_vs_control"
> resultsNames(dds2)
# 将结果用results()函数来获取,赋值给res变量
res <- results(dds2)
# summary一下,看一下结果的概要信息
summary(res)
image.png
5. 提取差异分析结果
# 获取padj(p值经过多重校验校正后的值)小于0.05,表达倍数取以2为对数后大于1或者小于-1的差异表达基因。
> table(res$padj<0.05)
> res <- res[order(res$padj),]
> diff_gene_deseq2 <-subset(res,padj < 0.05 & (log2FoldChange > 1 | log2FoldChange < -1))
> diff_gene_deseq2 <- row.names(diff_gene_deseq2)
> resdata <-  merge(as.data.frame(res),as.data.frame(counts(dds2,normalize=TRUE)),by="row.names",sort=FALSE)
# 得到csv格式的差异表达分析结果
> write.csv(resdata,file= "control_vs_akap95.cvs",row.names = F)
image.png
6. 参考文献
  1. https://zhuanlan.zhihu.com/p/30350531(青山屋主)
  2. http://www.jianshu.com/p/3bfb21d24b74 (lxmic)
  3. http://www.bioconductor.org/packages/release/bioc/vignettes/DESeq2/inst/doc/DESeq2.html (DESeq2 官网)
上一篇下一篇

猜你喜欢

热点阅读