大数据,机器学习,人工智能Python3入门机器学习实战

1.4 神经网络入门-数据处理与模型图构建

2018-09-24  本文已影响73人  9c0ddf06559c

1.4 数据处理与模型图构建

import pickle
import numpy as np
import os

CIFAR_DIR = './cifar-10-batches-py'
print(os.listdir(CIFAR_DIR))
  ['data_batch_1', 'readme.html', 'batches.meta', 'data_batch_2', 'data_batch_5', 'test_batch', 'data_batch_4', 'data_batch_3']
with open(os.path.join(CIFAR_DIR, "data_batch_1"), 'rb') as f:
    data = pickle.load(f, encoding='bytes')
    print(type(data))
    print(data.keys())
    print(type(data[b'data']))
    print(type(data[b'labels']))
    print(type(data[b'batch_label']))
    print(type(data[b'filenames']))
    print(data[b'data'].shape) # 32 * 32 (像素点)* 3(rbg三通道) # RR-GG-BB
    print(data[b'data'][0:2])
    print(data[b'labels'][0:2])
    print(data[b'batch_label'])
    print(data[b'filenames'][0:2])
  <class 'dict'>
  dict_keys([b'batch_label', b'labels', b'data', b'filenames'])
  <class 'numpy.ndarray'>
  <class 'list'>
  <class 'bytes'>
  <class 'list'>
  (10000, 3072)
  [[ 59  43  50 ... 140  84  72]
   [154 126 105 ... 139 142 144]]
  [6, 9]
  b'training batch 1 of 5'
  [b'leptodactylus_pentadactylus_s_000004.png', b'camion_s_000148.png']
image_arr = data[b'data'][100]
image_arr = image_arr.reshape((3,32,32)) # 需要32,32,3
image_arr = image_arr.transpose((1,2,0))

from matplotlib.pyplot import imshow

imshow(image_arr)
  <matplotlib.image.AxesImage at 0x12311e668>
image.png
上一篇 下一篇

猜你喜欢

热点阅读