数据分析商业智能BI那点事儿机器学习之旅

kaggle数据科学社区调查报告

2017-12-29  本文已影响52人  天善智能

欢迎关注天善智能,我们是专注于商业智能BI,人工智能AI,大数据分析与挖掘领域的垂直社区,学习,问答、求职一站式搞定!

本文作者:天善智能讲师邬书豪 。一入数据之门,当须精益求精。他日纵横捭阖,根据即在年轻!

天善智能社区地址:https://www.hellobi.com/


附视频链接:天善智能Kaggle十大案例精讲(连载中)提供案例代码和数据,可以实操。欢迎学习!(数据集和代码在链接公告处提供下载)

2017年8月26日,全球最大的数据科学社群Kaggle发布了数据科学/机器学习业界现状全行业调查的数据集。调查问卷数据从2017年8月7日~8月25日收集。受访者囊括了来自50多个国家的16,716+位从业者,根据kaggle的调查问卷数据集,我们挖掘一些有营养的信息。

################# =========== 导入数据+简单清洗 ============== #################

library(data.table)# fread()

library(dplyr)# group_by() / %>% / summaries()

library(ggplot2)# ggplot()

responses = fread("D:/R/天善智能/书豪十大案例/数据科学调查\\multipleChoiceResponses.csv")

## 把Country列中的表示中国的特征值改为中国

responses$Country <- ifelse(responses$Country =="Republic of China"|

responses$Country =="People 's Republic of China",

"China", responses$Country)

################# =========== 国家+年龄统计 ================ ##################

## 探索数据科学从业者的年龄中位数最大的十个国家

# 创建绘图所需的数据源(按照Country进行统计Age的中位数,并且按照Age进行降序排列)

df_country_age <- responses %>%

group_by(Country) %>%# 按照Country进行统计

summarise(AgeMedian = median(Age, na.rm = T)) %>%# 统计Age的中位数

arrange(desc(AgeMedian))# 按照Age进行降序排列

# reorder(Country, AgeMedian)--按照AgeMedian的升序排列其对应的Country

# head(df_country, 10)--选取数据源的前10行

# x参数中传入图中的x轴所需数据,y参数同理

# geom_bar()--绘制条形图的子函数

# fill = Country--按照Country填充条形图颜色

# stat(统计转换)参数设置为'identity',即对原始数据集不作任何统计变换

# geom_text()--添加文本注释的子函数

# label = AgeMedian--添加AgeMedian中的内容

# hjust--控制横向对齐(0:底部对齐,  0.5:居中,  1:顶部对齐)

# colour--控制注释颜色

# theme_minimal()--是ggplot的一种主背景主题

ggplot(head(df_country_age,10), aes(x = reorder(Country, AgeMedian), y = AgeMedian)) +

geom_bar(aes(fill = Country),stat='identity') +

labs(x ='Country', y ='AgeMedian') +

geom_text(aes(label = AgeMedian), hjust =1.5, colour ='white') +

coord_flip() +

theme_minimal() +

theme(legend.position ='none')# 移除图例

# 封装绘图函数

fun1 <-function(data, xlab, ylab, xname, yname) {

ggplot(data, aes(xlab, ylab)) +

geom_bar(aes(fill = xlab),stat='identity') +

labs(x = xname, y = yname) +

geom_text(aes(label = ylab), hjust =1.5, colour ='white') +

coord_flip() +

theme_minimal() +

theme(legend.position ='none')

}

data <- head(df_country_age,10)

xname <-'Country'

yname <-'AgeMedian'

fun1(data, reorder(data$Country, data$AgeMedian), data$AgeMedian, xname, yname)

## 探索数据科学从业者的年龄中位数最小的十个国家

################# =========== 职位统计 ==================== ####################

## 探索kaggler的当前职位

# 创建绘图所需的数据源(按照CurrentJobTitleSelect统计其个数,并按照个数进行降序排列)

df_CJT <- responses %>%

filter(CurrentJobTitleSelect !='') %>%# 筛选CurrentJobTitleSelect不为空的观测

group_by(CurrentJobTitleSelect) %>%# 按照CurrentJobTitleSelect统计

summarise(Count = n()) %>%# 统计其特征值的个数(Count)

arrange(desc(Count))# 按照个数(Count)进行降序排列

data <- head(df_CJT,10)

xname <-'Country'

yname <-'Count'

fun1(data, reorder(data$CurrentJobTitleSelect, data$Count), data$Count, xname, yname)

## 探索美国kaggler的当前职位

# 创建绘图所需的数据源(按照CurrentJobTitleSelect统计其个数,并按照个数进行降序排列)

df_CJT_USA <- responses %>%

# 筛选CurrentJobTitleSelect不为空且美国kaggler的观测

filter(CurrentJobTitleSelect !=''& Country =='United States') %>%

group_by(CurrentJobTitleSelect) %>%

summarise(Count = n()) %>%

arrange(desc(Count))

data <- head(df_CJT_USA,10)

xname <-'CurrentJobTitleSelect'

yname <-'Count'

fun1(data, reorder(data$CurrentJobTitleSelect, data$Count), data$Count, xname, yname)

## 探索中国kaggler的当前职位

df_CJT_China <- responses %>%

filter(CurrentJobTitleSelect !=''& Country =='China') %>%

group_by(CurrentJobTitleSelect) %>%

summarise(Count = n()) %>%

arrange(desc(Count))

data <- head(df_CJT_China,10)

xname <-'CurrentJobTitleSelect'

yname <-'Count'

fun1(data, reorder(data$CurrentJobTitleSelect, data$Count), data$Count, xname, yname)

################# =========== 明年将学习的机器学习工具 ============== ##########

## 探索kaggler明年将学习的机器学习工具

# 创建绘图所需数据源(按照MLToolNextYearSelect统计其个数,比按照其个数降序排列)

df_MLT <- responses %>%

filter(MLToolNextYearSelect !='') %>%# 筛选出MLToolNextYearSelect不为空的观测

group_by(MLToolNextYearSelect) %>%

summarise(Count = n()) %>%

arrange(desc(Count))

data <- head(df_MLT,10)

xname <-'ML Tool'

yname <-'Count'

fun1(data, reorder(data$MLToolNextYearSelect, data$Count), data$Count, xname, yname)

## 探索美国kaggler明年将学习的机器学习工具

# 创建绘图所需数据源(按照MLToolNextYearSelect统计其个数,比按照其个数降序排列)

df_MLT_USA <- responses %>%

# 筛选出MLToolNextYearSelect不为空且美国kaggler的观测

filter(MLToolNextYearSelect !=''& Country =='United States') %>%

group_by(MLToolNextYearSelect) %>%

summarise(Count = n()) %>%

arrange(desc(Count))

data <- head(df_MLT_USA,10)

xname <-'ML Tool'

yname <-'Count'

fun1(data, reorder(data$MLToolNextYearSelect, data$Count), data$Count, xname, yname)

## 探索中国kaggler明年将学习的机器学习工具

# 创建绘图所需数据源(按照MLToolNextYearSelect统计其个数,比按照其个数降序排列)

df_MLT_China <- responses %>%

# 筛选出MLToolNextYearSelect不为空且中国kaggler的观测

filter(MLToolNextYearSelect !=''& Country =='China') %>%

group_by(MLToolNextYearSelect) %>%

summarise(Count = n()) %>%

arrange(desc(Count))

data <- head(df_MLT_China,10)

xname <-'ML Tool'

yname <-'Count'

fun1(data, reorder(data$MLToolNextYearSelect, data$Count), data$Count, xname, yname)

################# =========== 明年将学习的机器学习方法 ============= ###########

## 探索kaggler明年将学习的机器学习方法

# 创建绘图所需数据源(按照MLMethodNextYearSelect统计其个数,比按照其个数降序排列)

df_MLM <- responses %>%

filter(MLMethodNextYearSelect !='') %>%# 筛选MLMethodNextYearSelect不为空的观测

group_by(MLMethodNextYearSelect) %>%

summarise(Count = n()) %>%

arrange(desc(Count))

data <- head(df_MLM,10)

xname <-'ML Method'

yname <-'Count'

fun1(data, reorder(data$MLMethodNextYearSelect, data$Count), data$Count, xname, yname)

## 探索美国kaggler明年将学习的机器学习方法

# 创建绘图所需数据源(按照MLMethodNextYearSelect统计其个数,比按照其个数降序排列)

df_MLM_USA <- responses %>%

# 筛选MLMethodNextYearSelect不为空且美国kaggler的观测

filter(MLMethodNextYearSelect !=''& Country =='United States') %>%

group_by(MLMethodNextYearSelect) %>%

summarise(Count = n()) %>%

arrange(desc(Count))

data <- head(df_MLM_USA,10)

xname <-'ML Method'

yname <-'Count'

fun1(data, reorder(data$MLMethodNextYearSelect, data$Count), data$Count, xname, yname)

## 探索中国kaggler明年将学习的机器学习方法

# 创建绘图所需数据源(按照MLMethodNextYearSelect统计其个数,比按照其个数降序排列)

df_MLM_China <- responses %>%

# 筛选MLMethodNextYearSelect不为空且中国kaggler的观测

filter(MLMethodNextYearSelect !=''& Country =='China') %>%

group_by(MLMethodNextYearSelect) %>%

summarise(Count = n()) %>%

arrange(desc(Count))

data <- head(df_MLM_China,10)

xname <-'ML Method'

yname <-'Count'

fun1(data, reorder(data$MLMethodNextYearSelect, data$Count), data$Count, xname, yname)

################# =========== 受访者来自的国家  ============= #################

## 探索kaggler都来自哪些国家

# 创建绘图所需数据源(按照Country统计其个数,比按照其个数降序排列)

df_Country <-  responses %>%

filter(Country !=''& Country !='Other') %>%

group_by(Country) %>%

summarise(Count = n()) %>%

arrange(desc(Count))

data <- head(df_Country,10)

xname <-'Country'

yname <-'Count'

fun1(data, reorder(data$Country, data$Count), data$Count, xname, yname)

################# =========== 受访者的学历水平 ===================== ###########

## 探索kaggler的学历水平

# 创建绘图所需数据源(按照FormalEducation统计其个数,比按照其个数降序排列)

df_Education <- responses %>%

filter(FormalEducation !='') %>%

group_by(FormalEducation) %>%

summarise(Count = n()) %>%

arrange(desc(Count))

data <- head(df_Education,10)

xname <-'FormalEducation'

yname <-'Count'

fun1(data, reorder(data$FormalEducation, data$Count), data$Count, xname, yname)

################# =========== 受访者的就业状况 ================ ################

## 探索kaggler的就业状况

# 创建绘图所需数据源(按照EmploymentStatus统计其个数,比按照其个数降序排列)

df_Employment <- responses %>%

group_by(EmploymentStatus) %>%

summarise(Count = n()) %>%

arrange(desc(Count))

data <- head(df_Employment,10)

xname <-'EmploymentStatus'

yname <-'Count'

fun1(data, reorder(data$EmploymentStatus, data$Count), data$Count, xname, yname)

################# =========== 受访者的学习平台 =============== #################

## 探索kaggler在什么平台学习数据科学

# 按照‘,’拆分字符串---把CoursePlatformSelect列的字符依据‘,’拆分

platform <- unlist(strsplit(responses$CoursePlatformSelect,','))

# 统计不同字符串(平台)的频次并转换成数据框

platform <-as.data.frame(table(platform))

data <- platform

xname <-'platform'

yname <-'Count'

fun1(data, reorder(data$platform, data$Freq), data$Freq, xname, yname)

## 探索kaggler何种方式开始学习数据科学的

# 创建绘图所需数据源(按照FirstTrainingSelect统计其个数,比按照其个数降序排列

df_FT <- responses %>%

filter(FirstTrainingSelect !='') %>%

group_by(FirstTrainingSelect) %>%

summarise(Count = n()) %>%

arrange(desc(Count))

data <- df_FT

xname <-'FirstTrainingSelect'

yname <-'Count'

fun1(data, reorder(data$FirstTrainingSelect, data$Count), data$Count, xname, yname)

################# =========== 任职数据科学的时间 =============== ###############

## 探索kaggler任职数据科学的时间

# 创建绘图所需数据源(按照Tenure统计其个数,比按照其个数降序排列

df_Tenure <- responses %>%

filter(Tenure !='') %>%

group_by(Tenure) %>%

summarise(Count = n()) %>%

arrange(desc(Count))

data <- df_Tenure

xname <-'Tenure'

yname <-'Count'

fun1(data, reorder(data$Tenure, data$Count), data$Count, xname, yname)

################# =========== 现任职的满意度 ======= ###########################

## 探索kaggler对现职位的满意度

# 创建绘图所需数据源(按照JobSatisfaction统计其个数,比按照其个数降序排列

df_JS <- responses %>%

filter(JobSatisfaction !='') %>%

group_by(JobSatisfaction) %>%

summarise(Count = n()) %>%

arrange(desc(Count))

data <- df_JS

xname <-'JobSatisfaction'

yname <-'Count'

fun1(data, reorder(data$JobSatisfaction, data$Count), data$Count, xname, yname)

################# =========== 首推的数据科学语言 ========== ####################

## 探索kaggler的首选语言

# 创建绘图所需数据源(按照LanguageRecommendationSelect统计其个数,并按照其个数降序排列

df_LR <- responses %>%

filter(LanguageRecommendationSelect !='') %>%

group_by(LanguageRecommendationSelect) %>%

summarise(Count = n()) %>%

arrange(desc(Count))

data <- df_LR

xname <-'LanguageRecommendationSelect'

yname <-'Count'

fun1(data, reorder(data$LanguageRecommendationSelect, data$Count), data$Count, xname, yname)

################# =========== BigData数据科学证书、R、Python、SQL的重要程度 ====== ##########

## 创建新数据框(按照JobSkillImportanceR统计其个数,并按照Count降序排列)

df_r <- responses %>%

filter(JobSkillImportanceR !='') %>%

group_by(JobSkillImportanceR) %>%

summarise(Count = n()) %>%

arrange(desc(Count))

df_r$Tool<-'R'# 创建新列,并赋值为‘R’

names(df_r) <- c("Importance","Count","Tool")# 对数据框重命名

df_python <- responses %>%

filter(JobSkillImportancePython !='') %>%

group_by(JobSkillImportancePython) %>%

summarise(Count = n()) %>%

arrange(desc(Count))

df_python$Tool<-'python'

names(df_python) = c("Importance","Count","Tool")

df_BigData <- responses %>%

filter(JobSkillImportanceBigData !='') %>%

group_by(JobSkillImportanceBigData) %>%

summarise(Count = n()) %>%

arrange(desc(Count))

df_BigData$Tool<-'BigData'

names(df_BigData) = c("Importance","Count","Tool")

df_SQL <- responses %>%

filter(JobSkillImportanceSQL !='') %>%

group_by(JobSkillImportanceSQL) %>%

summarise(Count = n()) %>%

arrange(desc(Count))

df_SQL$Tool<-'SQL'

names(df_SQL) = c("Importance","Count","Tool")

df_end <- rbind(df_python, df_r, df_BigData, df_SQL)# 对四个数据框进行行合并

## 绘制百分比堆积柱状图

# position = 'fill'意味着绘制百分比堆积柱状图

ggplot(df_end, aes(x = Tool, y = Count, fill = Importance)) +

geom_bar(position ='fill',stat='identity') +

labs(y ='Percent') +

theme_minimal()

################# =========== 5个不同国家对SQL、R和Python的推荐 ======== #######

## 创建数据源(以下5个国家+以下3个语言的观测)

df_country_language <- responses[responses$Country%in%

c("United States","India","Russia","Japan","China") &

responses$LanguageRecommendationSelect%in% c("R","Python","SQL"), ]

# 创建绘图所需数据源(按照Country+LanguageRecommendationSelect的组合统计其个数

df_cl <- df_country_language %>%

group_by(Country, LanguageRecommendationSelect) %>%

summarise(Count = n())

# 绘制百分比堆积柱状图(5个国家首推3个语言对比)

ggplot(df_cl, aes(x = Country, y = Count, fill = LanguageRecommendationSelect)) +

geom_bar(stat='identity') +

labs(y ='Percent') +

theme_minimal()


本文作者:天善智能讲师邬书豪。一入数据之门,当须精益求精。他日纵横捭阖,根据即在年轻!

更多内容,请戳:Kaggle十大案例精讲(连载中)

关注天善智能,我们是专注于商业智能BI,人工智能AI,大数据分析与挖掘领域的垂直社区,学习,问答、求职一站式搞定!

上一篇下一篇

猜你喜欢

热点阅读