ChipSeq数据分析科研信息学

[10] 6 Peak calling & &

2019-07-06  本文已影响10人  热衷组培的二货潜
6.3.3 实验分辨率
6.3.4 新一代的 Peak caller
6.3.5 Post-processing

6.4 Peakzilla:转录因子类型数据

6.5 MACS2:组蛋白修饰类型数据

6.6 饱和度分析

sample=NRF1_CHIP_WT_1
control=NRF1_INPUT_WT

## Number of peaks found
wc -l peaks/${sample}_peaks_peakzilla.bed

## Saturation analysis
# Does the number of peaks saturate when using all available reads

NB=$(samtools idxstats reads/${sample}.bam | awk '{t=t+$3}END{print t}') 

L=$sample
for subset in ‘seq 1000000 1000000 $NB‘;
do
L=$L"\t"$(peakzilla.py < (bamToBed -i         reads/${sample}.bam | shuf -n $subset
--random-source=reads/${sample}.bam) < (bamToBed -i
reads/${control}.bam) -l /dev/null | wc -l)
done

echo -e $L > peaks/${sample}_peakzilla_saturation_table.txt
# Open R
R

# Load saturation table
d = read.table(paste("peaks/",sample,
"_peakzilla_saturation_table.txt",sep=""),row.names=1)

# Generate the saturation plot
pdf(paste("peaks/",sample,"_peakzilla_saturation_plot.pdf", sep=""))

par(bg="white")
plot(seq(1,ncol(d),1),
     d[1,],
     type="l",
     xlab="Number of reads in million",
     ylab="Number of peakscalled",
     main=c("Saturation analysis",
            rownames(d)[1],
            paste("Total",d[1,ncol(d)],"peaks")))
dev.off()

# Close R
q()

ref1:Practical guidelines for the comprehensive analysis of ChIP-seq data.

ref2:How does multiple testing correction work?

ref3:Evaluation of algorithm performance in ChIP-seq peak detection

ref4:Model-based analysis of ChIP- Seq (MACS).

ref5:Design and analysis of ChIP-seq experiments for DNA-binding proteins.

ref6:Systematic evaluation of factors influencing ChIP-seq fidelity

ref7:Genome-wide mapping of in vivo protein-DNA interactions.

ref8:Homotypic clusters of transcription factor binding sites are a key component of human
promoters and enhancers

ref9:Exploiting transcription factor binding site clustering to identify cis-regulatory modules involved in pattern formation in the Drosophila genome.

ref10:Comprehensive genomewide protein-DNA interactions detected at single-nucleotide resolution.

ref11:ChIP-nexus enables improved detection of in vivo transcription factor binding footprints

ref12:Identification of transcription factor binding sites from ChIP-seq data at high resolution

ref13:Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities.

ref14:JAMM: a peak finder for joint analysis of NGS replicates

ref15:High resolution genome wide binding event finding and motif discovery reveals transcription factor spatial binding constraints.

上一篇 下一篇

猜你喜欢

热点阅读