2.3 卷积神经网络-卷积神经网络实战
2018-10-05 本文已影响54人
9c0ddf06559c
4.1.3 卷积神经网络实战
-
使用神经网路进行图像分类
使用TensorFlow封装的函数简化定义模型的过程
# (3072, 10) w = tf.get_variable('w', [x.get_shape()[-1], 10], initializer=tf.random_normal_initializer(0, 1)) # (10, ) b = tf.get_variable('b', [10], initializer=tf.constant_initializer(0.0)) # [None, 3072] * [3072, 1] = [None, 1] y_ = tf.matmul(x, w) + b
上面这段代码可以替换为
y_ = tf.layers.dense(hidden, 10)
dense函数时一个全连接的api,我们可以用他构建更多的层次
下面的代码构建了一个三个隐含层的神经网络,前两层有100个神经元,第三层有50个,激活函数都是relu
# activation选择激活函数 hidden1 = tf.layers.dense(x, 100, activation=tf.nn.relu) hidden2 = tf.layers.dense(hidden1, 100, activation=tf.nn.relu) hidden3 = tf.layers.dense(hidden2, 50, activation=tf.nn.relu) y_ = tf.layers.dense(hidden3, 10)
修改完代码后重新跑我们的测试,模型准确率达到了百分之50
[Train] Step: 500, loss: 2.14457, acc: 0.25000 [Train] Step: 1000, loss: 1.38850, acc: 0.45000 [Train] Step: 1500, loss: 1.48442, acc: 0.45000 [Train] Step: 2000, loss: 1.30306, acc: 0.70000 [Train] Step: 2500, loss: 1.81453, acc: 0.35000 [Train] Step: 3000, loss: 1.25715, acc: 0.55000 [Train] Step: 3500, loss: 1.24998, acc: 0.55000 [Train] Step: 4000, loss: 1.52799, acc: 0.45000 [Train] Step: 4500, loss: 1.40961, acc: 0.40000 [Train] Step: 5000, loss: 1.29267, acc: 0.65000 (10000, 3072) (10000,) [Test ] Step: 5000, acc: 0.46650 [Train] Step: 5500, loss: 1.61286, acc: 0.20000 [Train] Step: 6000, loss: 1.14901, acc: 0.45000 [Train] Step: 6500, loss: 1.59980, acc: 0.60000 [Train] Step: 7000, loss: 1.80693, acc: 0.40000 [Train] Step: 7500, loss: 1.60266, acc: 0.45000 [Train] Step: 8000, loss: 1.46613, acc: 0.65000 [Train] Step: 8500, loss: 1.77019, acc: 0.45000 [Train] Step: 9000, loss: 1.57591, acc: 0.50000 [Train] Step: 9500, loss: 0.96180, acc: 0.75000 [Train] Step: 10000, loss: 1.08688, acc: 0.70000 (10000, 3072) (10000,) [Test ] Step: 10000, acc: 0.49750
-
使用卷积神经网络进行图像分类
全连接有api,池化核卷积当然也有
# conv1:神经元图,feature map,输出图像 conv1 = tf.layers.conv2d(x_image, 32, # output channel number (3,3), # kernal size padding = 'same', # same 代表输出图像的大小没有变化,valid 代表不做padding activation = tf.nn.relu, name = 'conv1' ) # 16*16 pooling1 = tf.layers.max_pooling2d(conv1, (2, 2), # kernal size (2, 2), # stride name = 'pool1' # name为了给这一层做一个命名,这样会让图打印出来的时候会是一个有意义的图 )
这样就构建了一个卷积层一个池化层,我们可以再复制两遍,修改输入,这样就有了三层卷积层三层池化层
最后再加一层全连接
conv2 = tf.layers.conv2d(pooling1, 32, # output channel number (3,3), # kernal size padding = 'same', # same 代表输出图像的大小没有变化,valid 代表不做padding activation = tf.nn.relu, name = 'conv2' ) # 8*8 pooling2 = tf.layers.max_pooling2d(conv2, (2, 2), # kernal size (2, 2), # stride name = 'pool2' # name为了给这一层做一个命名,这样会让图打印出来的时候会是一个有意义的图 ) conv3 = tf.layers.conv2d(pooling2, 32, # output channel number (3,3), # kernal size padding = 'same', # same 代表输出图像的大小没有变化,valid 代表不做padding activation = tf.nn.relu, name = 'conv3' ) # 4*4*32 pooling3 = tf.layers.max_pooling2d(conv3, (2, 2), # kernal size (2, 2), # stride name = 'pool3' # name为了给这一层做一个命名,这样会让图打印出来的时候会是一个有意义的图 ) # [None, 4*4*42] 将三通道的图形转换成矩阵 flatten = tf.layers.flatten(pooling3) y_ = tf.layers.dense(flatten, 10)
这样卷积神经网络结构就搭建完了,可以看到,我们在完成数据准备和测试结果之后,使用TensorFlow的API构建网络结构还是非常简单的。
使用卷积神经网络,10000次训练进行测试,分类结果达到了百分之69
[Train] Step: 500, loss: 1.24817, acc: 0.60000 [Train] Step: 1000, loss: 1.24423, acc: 0.50000 [Train] Step: 1500, loss: 1.15608, acc: 0.55000 [Train] Step: 2000, loss: 0.89077, acc: 0.85000 [Train] Step: 2500, loss: 0.91770, acc: 0.60000 [Train] Step: 3000, loss: 1.09620, acc: 0.55000 [Train] Step: 3500, loss: 0.83352, acc: 0.70000 [Train] Step: 4000, loss: 1.00452, acc: 0.60000 [Train] Step: 4500, loss: 1.13865, acc: 0.60000 [Train] Step: 5000, loss: 0.63163, acc: 0.85000 (10000, 3072) (10000,) [Test ] Step: 5000, acc: 0.64850 [Train] Step: 5500, loss: 1.29329, acc: 0.55000 [Train] Step: 6000, loss: 1.14539, acc: 0.65000 [Train] Step: 6500, loss: 0.48069, acc: 0.80000 [Train] Step: 7000, loss: 1.02633, acc: 0.65000 [Train] Step: 7500, loss: 0.93267, acc: 0.70000 [Train] Step: 8000, loss: 0.97426, acc: 0.70000 [Train] Step: 8500, loss: 0.97432, acc: 0.75000 [Train] Step: 9000, loss: 0.84112, acc: 0.70000 [Train] Step: 9500, loss: 0.79695, acc: 0.70000 [Train] Step: 10000, loss: 0.64198, acc: 0.80000 (10000, 3072) (10000,) [Test ] Step: 10000, acc: 0.69950